L(s) = 1 | − 8-s − 27-s − 3·41-s − 3·49-s − 3·59-s − 3·67-s − 3·73-s − 3·97-s − 6·107-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 216-s + ⋯ |
L(s) = 1 | − 8-s − 27-s − 3·41-s − 3·49-s − 3·59-s − 3·67-s − 3·73-s − 3·97-s − 6·107-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 216-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 3^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 3^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1435909897\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1435909897\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T^{3} + T^{6} \) |
| 3 | \( 1 + T^{3} + T^{6} \) |
| 19 | \( 1 + T^{3} + T^{6} \) |
good | 5 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 7 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 11 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 13 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 17 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 23 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 29 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 31 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 37 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 41 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 43 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 47 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 53 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 59 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 61 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 67 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 71 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 73 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 79 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 83 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 89 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 97 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.24428967078670367066662669490, −5.17913680831518238405860598478, −5.06567192777839128786242979895, −4.91672145825870559323984662226, −4.53601154462552804002952560531, −4.50057603988980234923567831222, −4.32842368214115029869908058915, −4.05474161767340251238105617188, −4.04202721541876520505888493464, −3.80071021914470413803482622418, −3.74526455105609671537830422025, −3.55567064592861768381024335324, −3.00728146216149728087787171911, −2.97927172552445241011113117541, −2.95612572687596962168003483353, −2.87097021543909185438652324061, −2.80071186756687473897408780898, −2.68605637015677730009040488767, −1.83582363627582254173468044454, −1.83561561708543029341117683936, −1.72341843891266410999098124536, −1.62327040332463009654822383384, −1.49456594073301148914440252572, −1.04753531556126707889247878159, −0.19785671053864246233162746748,
0.19785671053864246233162746748, 1.04753531556126707889247878159, 1.49456594073301148914440252572, 1.62327040332463009654822383384, 1.72341843891266410999098124536, 1.83561561708543029341117683936, 1.83582363627582254173468044454, 2.68605637015677730009040488767, 2.80071186756687473897408780898, 2.87097021543909185438652324061, 2.95612572687596962168003483353, 2.97927172552445241011113117541, 3.00728146216149728087787171911, 3.55567064592861768381024335324, 3.74526455105609671537830422025, 3.80071021914470413803482622418, 4.04202721541876520505888493464, 4.05474161767340251238105617188, 4.32842368214115029869908058915, 4.50057603988980234923567831222, 4.53601154462552804002952560531, 4.91672145825870559323984662226, 5.06567192777839128786242979895, 5.17913680831518238405860598478, 5.24428967078670367066662669490
Plot not available for L-functions of degree greater than 10.