L(s) = 1 | + (−2.19 − 2.19i)3-s + (1.49 − 1.66i)5-s + (2.96 − 2.96i)7-s + 6.60i·9-s + 1.38i·11-s + (−4.45 + 4.45i)13-s + (−6.91 + 0.364i)15-s + (−0.707 − 0.707i)17-s − 4.88·19-s − 12.9·21-s + (−3.78 − 3.78i)23-s + (−0.525 − 4.97i)25-s + (7.89 − 7.89i)27-s + 6.11i·29-s + 3.24i·31-s + ⋯ |
L(s) = 1 | + (−1.26 − 1.26i)3-s + (0.668 − 0.743i)5-s + (1.11 − 1.11i)7-s + 2.20i·9-s + 0.416i·11-s + (−1.23 + 1.23i)13-s + (−1.78 + 0.0942i)15-s + (−0.171 − 0.171i)17-s − 1.12·19-s − 2.83·21-s + (−0.789 − 0.789i)23-s + (−0.105 − 0.994i)25-s + (1.51 − 1.51i)27-s + 1.13i·29-s + 0.583i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.569 - 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.569 - 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3713017393\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3713017393\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.49 + 1.66i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (2.19 + 2.19i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.96 + 2.96i)T - 7iT^{2} \) |
| 11 | \( 1 - 1.38iT - 11T^{2} \) |
| 13 | \( 1 + (4.45 - 4.45i)T - 13iT^{2} \) |
| 19 | \( 1 + 4.88T + 19T^{2} \) |
| 23 | \( 1 + (3.78 + 3.78i)T + 23iT^{2} \) |
| 29 | \( 1 - 6.11iT - 29T^{2} \) |
| 31 | \( 1 - 3.24iT - 31T^{2} \) |
| 37 | \( 1 + (3.88 + 3.88i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.98T + 41T^{2} \) |
| 43 | \( 1 + (3.84 + 3.84i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.22 + 2.22i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.67 - 4.67i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.4T + 59T^{2} \) |
| 61 | \( 1 - 3.02T + 61T^{2} \) |
| 67 | \( 1 + (5.47 - 5.47i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.86iT - 71T^{2} \) |
| 73 | \( 1 + (-5.76 + 5.76i)T - 73iT^{2} \) |
| 79 | \( 1 + 17.0T + 79T^{2} \) |
| 83 | \( 1 + (2.65 + 2.65i)T + 83iT^{2} \) |
| 89 | \( 1 + 11.1iT - 89T^{2} \) |
| 97 | \( 1 + (-8.96 - 8.96i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.922447115368796530950684039284, −8.088419984679379589967438121519, −7.08172390869721145448241168798, −6.85894624533566909839350593783, −5.76576387563828109826336382698, −4.69797792244191729459878791683, −4.58554953667355567440933938291, −1.97280233893962680630913530838, −1.62288934624792898628235204045, −0.16818359120258297262607055131,
2.04256852080230838845645817627, 3.19853846652732830382746052165, 4.49508048228725382836111915018, 5.23637348232902371503237353860, 5.78495949503928300949016402006, 6.41058775674964276929861314917, 7.76803838802251444570790122539, 8.651311180159982403240397438473, 9.742649397746404022633148539655, 10.08426537854204084959009325151