Properties

Label 2-1352-1.1-c3-0-7
Degree $2$
Conductor $1352$
Sign $1$
Analytic cond. $79.7705$
Root an. cond. $8.93143$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.18·3-s − 18.9·5-s − 9.32·7-s − 25.5·9-s + 39.8·11-s − 22.4·15-s − 92.6·17-s − 128.·19-s − 11.0·21-s − 158.·23-s + 235.·25-s − 62.3·27-s − 126.·29-s + 189.·31-s + 47.1·33-s + 177.·35-s + 53.7·37-s + 136.·41-s − 518.·43-s + 485.·45-s − 309.·47-s − 256.·49-s − 109.·51-s − 149.·53-s − 755.·55-s − 152.·57-s − 74.3·59-s + ⋯
L(s)  = 1  + 0.227·3-s − 1.69·5-s − 0.503·7-s − 0.948·9-s + 1.09·11-s − 0.387·15-s − 1.32·17-s − 1.55·19-s − 0.114·21-s − 1.44·23-s + 1.88·25-s − 0.444·27-s − 0.810·29-s + 1.09·31-s + 0.248·33-s + 0.854·35-s + 0.238·37-s + 0.518·41-s − 1.83·43-s + 1.60·45-s − 0.961·47-s − 0.746·49-s − 0.301·51-s − 0.387·53-s − 1.85·55-s − 0.353·57-s − 0.164·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1352\)    =    \(2^{3} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(79.7705\)
Root analytic conductor: \(8.93143\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1352,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3836216696\)
\(L(\frac12)\) \(\approx\) \(0.3836216696\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 1.18T + 27T^{2} \)
5 \( 1 + 18.9T + 125T^{2} \)
7 \( 1 + 9.32T + 343T^{2} \)
11 \( 1 - 39.8T + 1.33e3T^{2} \)
17 \( 1 + 92.6T + 4.91e3T^{2} \)
19 \( 1 + 128.T + 6.85e3T^{2} \)
23 \( 1 + 158.T + 1.21e4T^{2} \)
29 \( 1 + 126.T + 2.43e4T^{2} \)
31 \( 1 - 189.T + 2.97e4T^{2} \)
37 \( 1 - 53.7T + 5.06e4T^{2} \)
41 \( 1 - 136.T + 6.89e4T^{2} \)
43 \( 1 + 518.T + 7.95e4T^{2} \)
47 \( 1 + 309.T + 1.03e5T^{2} \)
53 \( 1 + 149.T + 1.48e5T^{2} \)
59 \( 1 + 74.3T + 2.05e5T^{2} \)
61 \( 1 - 99.0T + 2.26e5T^{2} \)
67 \( 1 - 435.T + 3.00e5T^{2} \)
71 \( 1 + 827.T + 3.57e5T^{2} \)
73 \( 1 - 981.T + 3.89e5T^{2} \)
79 \( 1 - 299.T + 4.93e5T^{2} \)
83 \( 1 - 169.T + 5.71e5T^{2} \)
89 \( 1 - 265.T + 7.04e5T^{2} \)
97 \( 1 + 88.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.957731846739305017059019796244, −8.415978212537576662602916854825, −7.83486608790089527628351696854, −6.63472267819900511832372571556, −6.28491183337120296248273517455, −4.69275062316536028500538370536, −3.99031262054212261143474042460, −3.32175210367181366280259455666, −2.08534343408821721454341294932, −0.28802171303957937644996188159, 0.28802171303957937644996188159, 2.08534343408821721454341294932, 3.32175210367181366280259455666, 3.99031262054212261143474042460, 4.69275062316536028500538370536, 6.28491183337120296248273517455, 6.63472267819900511832372571556, 7.83486608790089527628351696854, 8.415978212537576662602916854825, 8.957731846739305017059019796244

Graph of the $Z$-function along the critical line