Properties

Label 4-1352e2-1.1-c0e2-0-2
Degree $4$
Conductor $1827904$
Sign $1$
Analytic cond. $0.455268$
Root an. cond. $0.821423$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 2·5-s + 6-s − 7-s − 8-s + 9-s + 2·10-s − 14-s + 2·15-s − 16-s + 17-s + 18-s − 21-s − 24-s + 25-s + 2·27-s + 2·30-s − 4·31-s + 34-s − 2·35-s − 37-s − 2·40-s − 42-s + 43-s + 2·45-s + 2·47-s + ⋯
L(s)  = 1  + 2-s + 3-s + 2·5-s + 6-s − 7-s − 8-s + 9-s + 2·10-s − 14-s + 2·15-s − 16-s + 17-s + 18-s − 21-s − 24-s + 25-s + 2·27-s + 2·30-s − 4·31-s + 34-s − 2·35-s − 37-s − 2·40-s − 42-s + 43-s + 2·45-s + 2·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1827904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1827904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1827904\)    =    \(2^{6} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.455268\)
Root analytic conductor: \(0.821423\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1827904,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.868757836\)
\(L(\frac12)\) \(\approx\) \(2.868757836\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
13 \( 1 \)
good3$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$ \( ( 1 + T )^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.694424961088856943637123830944, −9.656361258447832361351970541212, −9.176236979548475948595703556973, −8.901489103286226464715055778822, −8.821906459645765264092299128194, −7.85641125598285750583854574681, −7.55898338060417101902618265648, −6.95082644074089100118944442157, −6.73673343551487987721213397314, −6.13245980298341720261497565501, −5.66789066664759067689681095834, −5.40223010768282246688390057095, −5.32785995138195198531269442945, −4.16073480727035636401139162302, −4.11916395240540342828665887712, −3.29754264747014878341025719717, −3.19189314768370573786091537147, −2.36510886821755244404225231322, −2.09984144407098855652649634303, −1.33863083999387774122270682158, 1.33863083999387774122270682158, 2.09984144407098855652649634303, 2.36510886821755244404225231322, 3.19189314768370573786091537147, 3.29754264747014878341025719717, 4.11916395240540342828665887712, 4.16073480727035636401139162302, 5.32785995138195198531269442945, 5.40223010768282246688390057095, 5.66789066664759067689681095834, 6.13245980298341720261497565501, 6.73673343551487987721213397314, 6.95082644074089100118944442157, 7.55898338060417101902618265648, 7.85641125598285750583854574681, 8.821906459645765264092299128194, 8.901489103286226464715055778822, 9.176236979548475948595703556973, 9.656361258447832361351970541212, 9.694424961088856943637123830944

Graph of the $Z$-function along the critical line