Properties

Label 2-1350-1.1-c3-0-58
Degree $2$
Conductor $1350$
Sign $-1$
Analytic cond. $79.6525$
Root an. cond. $8.92482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 29.5·7-s − 8·8-s + 46.5·11-s − 92.0·13-s − 59.0·14-s + 16·16-s + 4.53·17-s + 87.5·19-s − 93.0·22-s − 160.·23-s + 184.·26-s + 118.·28-s − 241.·29-s − 2.68·31-s − 32·32-s − 9.07·34-s + 20.6·37-s − 175.·38-s − 501.·41-s − 294.·43-s + 186.·44-s + 321.·46-s − 478.·47-s + 529.·49-s − 368.·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.59·7-s − 0.353·8-s + 1.27·11-s − 1.96·13-s − 1.12·14-s + 0.250·16-s + 0.0647·17-s + 1.05·19-s − 0.901·22-s − 1.45·23-s + 1.38·26-s + 0.797·28-s − 1.54·29-s − 0.0155·31-s − 0.176·32-s − 0.0457·34-s + 0.0915·37-s − 0.747·38-s − 1.90·41-s − 1.04·43-s + 0.637·44-s + 1.03·46-s − 1.48·47-s + 1.54·49-s − 0.982·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1350\)    =    \(2 \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(79.6525\)
Root analytic conductor: \(8.92482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1350,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 29.5T + 343T^{2} \)
11 \( 1 - 46.5T + 1.33e3T^{2} \)
13 \( 1 + 92.0T + 2.19e3T^{2} \)
17 \( 1 - 4.53T + 4.91e3T^{2} \)
19 \( 1 - 87.5T + 6.85e3T^{2} \)
23 \( 1 + 160.T + 1.21e4T^{2} \)
29 \( 1 + 241.T + 2.43e4T^{2} \)
31 \( 1 + 2.68T + 2.97e4T^{2} \)
37 \( 1 - 20.6T + 5.06e4T^{2} \)
41 \( 1 + 501.T + 6.89e4T^{2} \)
43 \( 1 + 294.T + 7.95e4T^{2} \)
47 \( 1 + 478.T + 1.03e5T^{2} \)
53 \( 1 - 243.T + 1.48e5T^{2} \)
59 \( 1 + 383.T + 2.05e5T^{2} \)
61 \( 1 - 132.T + 2.26e5T^{2} \)
67 \( 1 + 582.T + 3.00e5T^{2} \)
71 \( 1 + 566.T + 3.57e5T^{2} \)
73 \( 1 - 839.T + 3.89e5T^{2} \)
79 \( 1 - 451.T + 4.93e5T^{2} \)
83 \( 1 - 301.T + 5.71e5T^{2} \)
89 \( 1 - 739.T + 7.04e5T^{2} \)
97 \( 1 - 1.14e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.859797745448568815929264437701, −7.901227127375190353490832355096, −7.50683512551363547112645333195, −6.58907484964457345296216443501, −5.37521599676824526705981986623, −4.71419509191795424004510418563, −3.55059678575613104638555545817, −2.08684076418720859304538382248, −1.48571359651296381742040880978, 0, 1.48571359651296381742040880978, 2.08684076418720859304538382248, 3.55059678575613104638555545817, 4.71419509191795424004510418563, 5.37521599676824526705981986623, 6.58907484964457345296216443501, 7.50683512551363547112645333195, 7.901227127375190353490832355096, 8.859797745448568815929264437701

Graph of the $Z$-function along the critical line