L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (3.46 − 2i)7-s + 0.999i·8-s + (1.5 + 2.59i)11-s + (3.46 + 2i)13-s + (−1.99 + 3.46i)14-s + (−0.5 − 0.866i)16-s + 3i·17-s − 5·19-s + (−2.59 − 1.5i)22-s + (5.19 + 3i)23-s − 3.99·26-s − 3.99i·28-s + (−3 − 5.19i)29-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (1.30 − 0.755i)7-s + 0.353i·8-s + (0.452 + 0.783i)11-s + (0.960 + 0.554i)13-s + (−0.534 + 0.925i)14-s + (−0.125 − 0.216i)16-s + 0.727i·17-s − 1.14·19-s + (−0.553 − 0.319i)22-s + (1.08 + 0.625i)23-s − 0.784·26-s − 0.755i·28-s + (−0.557 − 0.964i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.523901138\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.523901138\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-3.46 + 2i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.46 - 2i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3iT - 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (-5.19 - 3i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-9.52 + 5.5i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.33 - 2.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 7iT - 73T^{2} \) |
| 79 | \( 1 + (-7 - 12.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (10.3 - 6i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (9.52 - 5.5i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.603492053439268916546675490042, −8.710262914531595424410719321908, −8.171534738736043982708540714562, −7.28081967989516007049093331608, −6.64913065466482772560655653547, −5.62608843771465174208185590855, −4.53058597360788282650396521429, −3.88997271371033481726924566915, −2.03344979078046622805162146829, −1.21953593906862902178320874172,
0.948207750971192967279615112620, 2.11322264412609325258323138201, 3.18450156969230141513197225560, 4.34628904067068234527759147299, 5.38711504295753093086838198401, 6.20781854416986378866179027257, 7.29635651898047633334763236148, 8.193742698968795059336039659404, 8.784098645218889060081957167388, 9.196650415688786605195564990920