Properties

Label 2-135-135.32-c3-0-50
Degree $2$
Conductor $135$
Sign $0.274 - 0.961i$
Analytic cond. $7.96525$
Root an. cond. $2.82227$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.355 − 4.06i)2-s + (−0.359 − 5.18i)3-s + (−8.51 − 1.50i)4-s + (−6.07 + 9.38i)5-s + (−21.2 − 0.381i)6-s + (−6.05 + 8.64i)7-s + (−0.687 + 2.56i)8-s + (−26.7 + 3.72i)9-s + (36.0 + 28.0i)10-s + (−16.2 + 44.6i)11-s + (−4.72 + 44.7i)12-s + (−24.5 + 2.14i)13-s + (32.9 + 27.6i)14-s + (50.8 + 28.0i)15-s + (−54.8 − 19.9i)16-s + (−27.7 − 103. i)17-s + ⋯
L(s)  = 1  + (0.125 − 1.43i)2-s + (−0.0692 − 0.997i)3-s + (−1.06 − 0.187i)4-s + (−0.543 + 0.839i)5-s + (−1.44 − 0.0259i)6-s + (−0.326 + 0.466i)7-s + (−0.0304 + 0.113i)8-s + (−0.990 + 0.138i)9-s + (1.13 + 0.886i)10-s + (−0.445 + 1.22i)11-s + (−0.113 + 1.07i)12-s + (−0.523 + 0.0458i)13-s + (0.629 + 0.528i)14-s + (0.875 + 0.483i)15-s + (−0.856 − 0.311i)16-s + (−0.395 − 1.47i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.274 - 0.961i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.274 - 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $0.274 - 0.961i$
Analytic conductor: \(7.96525\)
Root analytic conductor: \(2.82227\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (32, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :3/2),\ 0.274 - 0.961i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.158262 + 0.119408i\)
\(L(\frac12)\) \(\approx\) \(0.158262 + 0.119408i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.359 + 5.18i)T \)
5 \( 1 + (6.07 - 9.38i)T \)
good2 \( 1 + (-0.355 + 4.06i)T + (-7.87 - 1.38i)T^{2} \)
7 \( 1 + (6.05 - 8.64i)T + (-117. - 322. i)T^{2} \)
11 \( 1 + (16.2 - 44.6i)T + (-1.01e3 - 855. i)T^{2} \)
13 \( 1 + (24.5 - 2.14i)T + (2.16e3 - 381. i)T^{2} \)
17 \( 1 + (27.7 + 103. i)T + (-4.25e3 + 2.45e3i)T^{2} \)
19 \( 1 + (75.6 - 43.6i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-155. + 109. i)T + (4.16e3 - 1.14e4i)T^{2} \)
29 \( 1 + (23.0 - 19.3i)T + (4.23e3 - 2.40e4i)T^{2} \)
31 \( 1 + (-32.5 + 184. i)T + (-2.79e4 - 1.01e4i)T^{2} \)
37 \( 1 + (430. - 115. i)T + (4.38e4 - 2.53e4i)T^{2} \)
41 \( 1 + (-103. + 123. i)T + (-1.19e4 - 6.78e4i)T^{2} \)
43 \( 1 + (255. - 118. i)T + (5.11e4 - 6.09e4i)T^{2} \)
47 \( 1 + (-119. - 83.6i)T + (3.55e4 + 9.75e4i)T^{2} \)
53 \( 1 + (-173. - 173. i)T + 1.48e5iT^{2} \)
59 \( 1 + (206. - 74.9i)T + (1.57e5 - 1.32e5i)T^{2} \)
61 \( 1 + (66.4 + 376. i)T + (-2.13e5 + 7.76e4i)T^{2} \)
67 \( 1 + (27.1 + 310. i)T + (-2.96e5 + 5.22e4i)T^{2} \)
71 \( 1 + (560. + 323. i)T + (1.78e5 + 3.09e5i)T^{2} \)
73 \( 1 + (-455. - 122. i)T + (3.36e5 + 1.94e5i)T^{2} \)
79 \( 1 + (513. + 612. i)T + (-8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (497. + 43.5i)T + (5.63e5 + 9.92e4i)T^{2} \)
89 \( 1 + (-159. - 277. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + (-332. - 713. i)T + (-5.86e5 + 6.99e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.09399912660230317681214437100, −11.14279689350787256787560943080, −10.24376270250539857261931130411, −9.026489006373104666469297715089, −7.44284688230848746967750365951, −6.67908697085369189247087614576, −4.72565805050281104870518412415, −2.95095079736007881098604131533, −2.18556188411895180009125765056, −0.090563934242092518190192537497, 3.64483624273686393692467368660, 4.86131925731626306205342119895, 5.72695802853840680746700982726, 7.06820218859588467844632669485, 8.498147392799418897212075323631, 8.795445832086470016399857834579, 10.44848077486245554205704110599, 11.35600929915610778988980655600, 12.91040437728871509468750959916, 13.78037677039140004268488981640

Graph of the $Z$-function along the critical line