L(s) = 1 | + (−0.683 − 0.683i)2-s − 3.06i·4-s + (−2.52 − 4.31i)5-s + (1.91 + 1.91i)7-s + (−4.82 + 4.82i)8-s + (−1.22 + 4.67i)10-s − 16.0·11-s + (0.607 − 0.607i)13-s − 2.61i·14-s − 5.66·16-s + (−7.56 − 7.56i)17-s − 21.0i·19-s + (−13.2 + 7.75i)20-s + (10.9 + 10.9i)22-s + (25.2 − 25.2i)23-s + ⋯ |
L(s) = 1 | + (−0.341 − 0.341i)2-s − 0.766i·4-s + (−0.505 − 0.862i)5-s + (0.273 + 0.273i)7-s + (−0.603 + 0.603i)8-s + (−0.122 + 0.467i)10-s − 1.45·11-s + (0.0467 − 0.0467i)13-s − 0.186i·14-s − 0.354·16-s + (−0.444 − 0.444i)17-s − 1.10i·19-s + (−0.661 + 0.387i)20-s + (0.498 + 0.498i)22-s + (1.09 − 1.09i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.293i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.955 + 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.103070 - 0.686067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.103070 - 0.686067i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.52 + 4.31i)T \) |
good | 2 | \( 1 + (0.683 + 0.683i)T + 4iT^{2} \) |
| 7 | \( 1 + (-1.91 - 1.91i)T + 49iT^{2} \) |
| 11 | \( 1 + 16.0T + 121T^{2} \) |
| 13 | \( 1 + (-0.607 + 0.607i)T - 169iT^{2} \) |
| 17 | \( 1 + (7.56 + 7.56i)T + 289iT^{2} \) |
| 19 | \( 1 + 21.0iT - 361T^{2} \) |
| 23 | \( 1 + (-25.2 + 25.2i)T - 529iT^{2} \) |
| 29 | \( 1 - 13.4iT - 841T^{2} \) |
| 31 | \( 1 + 39.2T + 961T^{2} \) |
| 37 | \( 1 + (-5.47 - 5.47i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 69.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-55.6 + 55.6i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-13.7 - 13.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-34.8 + 34.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 62.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 67.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-29.2 - 29.2i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 71.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (23.5 - 23.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 5.61iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (26.0 - 26.0i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 23.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-97.3 - 97.3i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53587171895048411327707494279, −11.24603558339712105509317773805, −10.66776065294930472710272343138, −9.255345784444892228366153344449, −8.607182249108369335392023360963, −7.26492183477160666783263532014, −5.51473225931288940947306669750, −4.73902359518812485646393706717, −2.47549666159035279967223394215, −0.50348031144543709441697563165,
2.81805364705634453381426278192, 4.10553126193122146566399299255, 5.95737219518420315485119736590, 7.56092577740206340417167054825, 7.67052406439138037205321831339, 9.119051214251778426451550698543, 10.52151655700568938758429409641, 11.26721219517520895200166619090, 12.50127002395672650705220684696, 13.33821339183932304242268971746