L(s) = 1 | + 3i·3-s − 16.7i·5-s − 7·7-s − 9·9-s + 16.7i·11-s − 86.0i·13-s + 50.3·15-s + 87.5·17-s + 104. i·19-s − 21i·21-s + 171.·23-s − 157.·25-s − 27i·27-s − 88.8i·29-s − 53.1·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.50i·5-s − 0.377·7-s − 0.333·9-s + 0.459i·11-s − 1.83i·13-s + 0.867·15-s + 1.24·17-s + 1.26i·19-s − 0.218i·21-s + 1.55·23-s − 1.25·25-s − 0.192i·27-s − 0.568i·29-s − 0.307·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.664900079\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.664900079\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 7 | \( 1 + 7T \) |
good | 5 | \( 1 + 16.7iT - 125T^{2} \) |
| 11 | \( 1 - 16.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 86.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 87.5T + 4.91e3T^{2} \) |
| 19 | \( 1 - 104. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 171.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 88.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 53.1T + 2.97e4T^{2} \) |
| 37 | \( 1 - 215. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 396.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 132. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 325.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 674. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 254. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 815. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 616. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 41.3T + 3.57e5T^{2} \) |
| 73 | \( 1 + 7.03T + 3.89e5T^{2} \) |
| 79 | \( 1 + 418.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 93.4iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 88.6T + 7.04e5T^{2} \) |
| 97 | \( 1 - 379.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.131480570634814184140268064973, −8.044614800674029177978986413558, −7.87332719718029601243841272081, −6.30134434693325988271887992257, −5.29445534082052588962997177033, −5.05279764386883324852594431172, −3.81089420748976138400795559972, −3.00364356661859664786729831830, −1.36099999816690009218903934793, −0.43394851908069431818590473662,
1.15146534376428090517321615115, 2.51703676927662937577229180507, 3.11089869254001571994811981099, 4.20442782727774254249221707552, 5.55593201252402938216413281048, 6.41326512851449187707832996872, 7.14183523496767618705695772084, 7.37281188456697302406248572968, 8.848965883110000420607665038852, 9.323534970743295407471347020835