L(s) = 1 | + 3·3-s − 15.7i·5-s + (15.0 − 10.7i)7-s + 9·9-s + 63.5i·11-s − 34.9i·13-s − 47.2i·15-s − 39.0i·17-s + 139.·19-s + (45.1 − 32.3i)21-s + 123. i·23-s − 123.·25-s + 27·27-s + 131.·29-s + 225.·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.40i·5-s + (0.813 − 0.581i)7-s + 0.333·9-s + 1.74i·11-s − 0.744i·13-s − 0.813i·15-s − 0.557i·17-s + 1.68·19-s + (0.469 − 0.335i)21-s + 1.11i·23-s − 0.986·25-s + 0.192·27-s + 0.842·29-s + 1.30·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.581 + 0.813i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.409071581\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.409071581\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 7 | \( 1 + (-15.0 + 10.7i)T \) |
good | 5 | \( 1 + 15.7iT - 125T^{2} \) |
| 11 | \( 1 - 63.5iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 34.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 39.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 139.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 123. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 131.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 225.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 148.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 174. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 451. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 146.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 278.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 26.4T + 2.05e5T^{2} \) |
| 61 | \( 1 - 69.5iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 288. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 362. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 719. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 972. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 494.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 88.7iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 372. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.279783426517124107749195193246, −8.085129043527915841762245221316, −7.78028823540155214691033609883, −6.96559740870294847350157697431, −5.40300933354864355005379835344, −4.82182731540456264020504569785, −4.20671842848920600724563134703, −2.87414653541952270839356574968, −1.54969276189020269472760524845, −0.910118806612918498579414129673,
1.06390084122832556453681714901, 2.47572086337388355375985733483, 3.02947912201529332928866320420, 4.00072981496953977086848670300, 5.24740219371412436469295122776, 6.22498107601914962113463901395, 6.84271119034560429976154031539, 7.955343357258040928337371180094, 8.400671072166771872885200034396, 9.271401422366602335954485219299