L(s) = 1 | − 3·3-s − 13.1i·5-s + (9.87 − 15.6i)7-s + 9·9-s + 66.5i·11-s + 33.0i·13-s + 39.3i·15-s + 86.2i·17-s + 21.0·19-s + (−29.6 + 47.0i)21-s − 218. i·23-s − 46.7·25-s − 27·27-s + 133.·29-s − 324.·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.17i·5-s + (0.533 − 0.846i)7-s + 0.333·9-s + 1.82i·11-s + 0.705i·13-s + 0.676i·15-s + 1.23i·17-s + 0.253·19-s + (−0.307 + 0.488i)21-s − 1.98i·23-s − 0.374·25-s − 0.192·27-s + 0.854·29-s − 1.87·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.846 - 0.533i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.846 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.01901541762\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01901541762\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 7 | \( 1 + (-9.87 + 15.6i)T \) |
good | 5 | \( 1 + 13.1iT - 125T^{2} \) |
| 11 | \( 1 - 66.5iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 33.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 86.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 21.0T + 6.85e3T^{2} \) |
| 23 | \( 1 + 218. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 133.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 324.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 73.1T + 5.06e4T^{2} \) |
| 41 | \( 1 + 309. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 28.7iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 162.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 575.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 861.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 367. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 818. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 407. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 515. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.13e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 941.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 628. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 522. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.593159434032929983697768860675, −8.787154106885830830338740930363, −7.930921227880691767922701632823, −7.10471772119580078377404529852, −6.36295453918809768416801730692, −5.09370070111831340191747640951, −4.55998080751783659448536392864, −4.01059052746995762819515202534, −1.99869223171165458506458330897, −1.28873778081750490961442700133,
0.00485308451974001390768376657, 1.40427210558326082762403215452, 2.95363507645414669116810642681, 3.29262824123162806043232990981, 4.93360106417005892637462259296, 5.70546046606896413534658108791, 6.20807602718391967261888840388, 7.33170496689326719266440809252, 7.935101332640460153896353980104, 8.983605191343394339295439364339