Properties

Label 2-1344-28.27-c3-0-0
Degree $2$
Conductor $1344$
Sign $-0.846 - 0.533i$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 13.1i·5-s + (9.87 − 15.6i)7-s + 9·9-s + 66.5i·11-s + 33.0i·13-s + 39.3i·15-s + 86.2i·17-s + 21.0·19-s + (−29.6 + 47.0i)21-s − 218. i·23-s − 46.7·25-s − 27·27-s + 133.·29-s − 324.·31-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.17i·5-s + (0.533 − 0.846i)7-s + 0.333·9-s + 1.82i·11-s + 0.705i·13-s + 0.676i·15-s + 1.23i·17-s + 0.253·19-s + (−0.307 + 0.488i)21-s − 1.98i·23-s − 0.374·25-s − 0.192·27-s + 0.854·29-s − 1.87·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.846 - 0.533i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.846 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-0.846 - 0.533i$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (895, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ -0.846 - 0.533i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.01901541762\)
\(L(\frac12)\) \(\approx\) \(0.01901541762\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 + (-9.87 + 15.6i)T \)
good5 \( 1 + 13.1iT - 125T^{2} \)
11 \( 1 - 66.5iT - 1.33e3T^{2} \)
13 \( 1 - 33.0iT - 2.19e3T^{2} \)
17 \( 1 - 86.2iT - 4.91e3T^{2} \)
19 \( 1 - 21.0T + 6.85e3T^{2} \)
23 \( 1 + 218. iT - 1.21e4T^{2} \)
29 \( 1 - 133.T + 2.43e4T^{2} \)
31 \( 1 + 324.T + 2.97e4T^{2} \)
37 \( 1 - 73.1T + 5.06e4T^{2} \)
41 \( 1 + 309. iT - 6.89e4T^{2} \)
43 \( 1 + 28.7iT - 7.95e4T^{2} \)
47 \( 1 + 162.T + 1.03e5T^{2} \)
53 \( 1 + 575.T + 1.48e5T^{2} \)
59 \( 1 + 861.T + 2.05e5T^{2} \)
61 \( 1 + 367. iT - 2.26e5T^{2} \)
67 \( 1 - 818. iT - 3.00e5T^{2} \)
71 \( 1 + 407. iT - 3.57e5T^{2} \)
73 \( 1 + 515. iT - 3.89e5T^{2} \)
79 \( 1 - 1.13e3iT - 4.93e5T^{2} \)
83 \( 1 + 941.T + 5.71e5T^{2} \)
89 \( 1 - 628. iT - 7.04e5T^{2} \)
97 \( 1 + 522. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.593159434032929983697768860675, −8.787154106885830830338740930363, −7.930921227880691767922701632823, −7.10471772119580078377404529852, −6.36295453918809768416801730692, −5.09370070111831340191747640951, −4.55998080751783659448536392864, −4.01059052746995762819515202534, −1.99869223171165458506458330897, −1.28873778081750490961442700133, 0.00485308451974001390768376657, 1.40427210558326082762403215452, 2.95363507645414669116810642681, 3.29262824123162806043232990981, 4.93360106417005892637462259296, 5.70546046606896413534658108791, 6.20807602718391967261888840388, 7.33170496689326719266440809252, 7.935101332640460153896353980104, 8.983605191343394339295439364339

Graph of the $Z$-function along the critical line