L(s) = 1 | + 3·3-s + 20.9i·5-s + (−17.6 + 5.46i)7-s + 9·9-s + 23.8i·11-s + 74.6i·13-s + 62.7i·15-s + 68.6i·17-s + 26.6·19-s + (−53.0 + 16.4i)21-s + 74.6i·23-s − 313.·25-s + 27·27-s − 128.·29-s + 212.·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.87i·5-s + (−0.955 + 0.295i)7-s + 0.333·9-s + 0.653i·11-s + 1.59i·13-s + 1.08i·15-s + 0.979i·17-s + 0.321·19-s + (−0.551 + 0.170i)21-s + 0.677i·23-s − 2.50·25-s + 0.192·27-s − 0.822·29-s + 1.22·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.887536942\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.887536942\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 7 | \( 1 + (17.6 - 5.46i)T \) |
good | 5 | \( 1 - 20.9iT - 125T^{2} \) |
| 11 | \( 1 - 23.8iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 74.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 68.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 26.6T + 6.85e3T^{2} \) |
| 23 | \( 1 - 74.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 128.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 212.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 329.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 182. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 260. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 401.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 76.7T + 1.48e5T^{2} \) |
| 59 | \( 1 - 901.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 271. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 499. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 299. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 452. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 347. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 775.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 48.7iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.05e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.910080503260126787609078239335, −9.041537500236008240228073628168, −7.918550286659661257083774366607, −7.04829614039483841774533144979, −6.63386859601521133813684732153, −5.86930926547000160028087207574, −4.22461617565093211825059791061, −3.52241039912247784893299091864, −2.63434942240192698607773271664, −1.86286012341735982877662995501,
0.46475500167690155037525686253, 0.958737551360815106508941007378, 2.61415572333668076773625528578, 3.53031388713522132139007640467, 4.54249245630721320632981515085, 5.37045353971847655822189487839, 6.15353708874863028879231739961, 7.43079758449927264419761831167, 8.201285246522442518034722385606, 8.696816625732099602494981554773