L(s) = 1 | + 3·3-s + 4.33i·5-s + (18.4 − 1.47i)7-s + 9·9-s + 21.1i·11-s − 36.7i·13-s + 12.9i·15-s + 46.5i·17-s + 89.7·19-s + (55.3 − 4.41i)21-s − 190. i·23-s + 106.·25-s + 27·27-s − 196.·29-s + 87.5·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.387i·5-s + (0.996 − 0.0794i)7-s + 0.333·9-s + 0.579i·11-s − 0.784i·13-s + 0.223i·15-s + 0.664i·17-s + 1.08·19-s + (0.575 − 0.0458i)21-s − 1.72i·23-s + 0.849·25-s + 0.192·27-s − 1.26·29-s + 0.507·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0794i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.336131345\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.336131345\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 7 | \( 1 + (-18.4 + 1.47i)T \) |
good | 5 | \( 1 - 4.33iT - 125T^{2} \) |
| 11 | \( 1 - 21.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 36.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 46.5iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 89.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 190. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 196.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 87.5T + 2.97e4T^{2} \) |
| 37 | \( 1 - 17.9T + 5.06e4T^{2} \) |
| 41 | \( 1 + 374. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 504. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 399.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 19.8T + 1.48e5T^{2} \) |
| 59 | \( 1 - 74.2T + 2.05e5T^{2} \) |
| 61 | \( 1 - 5.16iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 276. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 474. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 653. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 586. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 441.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 862. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 890. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.130738681631070228094950583364, −8.391890573494941686860852609012, −7.66565922054750216737946569270, −7.04601888301057680926256646984, −5.90826400022166996516473399635, −4.93269540414292056927207606399, −4.10837833791402406049918156314, −2.99393262019413582167926722090, −2.09008735957922657223002023857, −0.912330405323998262672447367871,
0.964519410051020066152440940913, 1.87484029775160388244400827136, 3.08175636246549228793554103984, 4.05610875975870166862430022199, 5.04520914252457713669591875379, 5.69033739018971295558876707354, 7.08195046026744297725575056409, 7.61976417486000605639683872805, 8.505554419861295236887795164219, 9.162180706995836789439130173633