L(s) = 1 | − 3·3-s + 20.9i·5-s + (17.6 − 5.46i)7-s + 9·9-s − 23.8i·11-s + 74.6i·13-s − 62.7i·15-s + 68.6i·17-s − 26.6·19-s + (−53.0 + 16.4i)21-s − 74.6i·23-s − 313.·25-s − 27·27-s − 128.·29-s − 212.·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.87i·5-s + (0.955 − 0.295i)7-s + 0.333·9-s − 0.653i·11-s + 1.59i·13-s − 1.08i·15-s + 0.979i·17-s − 0.321·19-s + (−0.551 + 0.170i)21-s − 0.677i·23-s − 2.50·25-s − 0.192·27-s − 0.822·29-s − 1.22·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9648992909\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9648992909\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 7 | \( 1 + (-17.6 + 5.46i)T \) |
good | 5 | \( 1 - 20.9iT - 125T^{2} \) |
| 11 | \( 1 + 23.8iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 74.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 68.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 26.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + 74.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 128.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 212.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 329.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 182. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 260. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 401.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 76.7T + 1.48e5T^{2} \) |
| 59 | \( 1 + 901.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 271. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 499. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 299. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 452. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 347. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 775.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 48.7iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.05e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.906816067951508135611237161625, −8.895842833380111730149463658464, −7.80310429058933333124272761223, −7.18122330080081439824086692937, −6.35765582078305304660739335945, −5.85745766344217130554411310972, −4.42187366647549894921472227737, −3.78396790864172148017521505244, −2.50307228429143288999438178589, −1.55779532384294388748446768167,
0.25332329270002613403415578263, 1.13918966858043696225035438158, 2.15058729358679570266277720716, 3.87351095438392448980183005971, 4.86870066515122688236788302319, 5.26099522608735055734479198728, 5.90016590339060302658615950666, 7.63975138529059342988336805718, 7.75141459733197749671763668148, 8.985343275401150407932869603564