Properties

Label 2-1344-1.1-c3-0-14
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2·5-s − 7·7-s + 9·9-s + 8·11-s + 42·13-s + 6·15-s − 2·17-s + 124·19-s + 21·21-s + 76·23-s − 121·25-s − 27·27-s − 254·29-s − 72·31-s − 24·33-s + 14·35-s − 398·37-s − 126·39-s + 462·41-s − 212·43-s − 18·45-s − 264·47-s + 49·49-s + 6·51-s + 162·53-s − 16·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.178·5-s − 0.377·7-s + 1/3·9-s + 0.219·11-s + 0.896·13-s + 0.103·15-s − 0.0285·17-s + 1.49·19-s + 0.218·21-s + 0.689·23-s − 0.967·25-s − 0.192·27-s − 1.62·29-s − 0.417·31-s − 0.126·33-s + 0.0676·35-s − 1.76·37-s − 0.517·39-s + 1.75·41-s − 0.751·43-s − 0.0596·45-s − 0.819·47-s + 1/7·49-s + 0.0164·51-s + 0.419·53-s − 0.0392·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.500631551\)
\(L(\frac12)\) \(\approx\) \(1.500631551\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
7 \( 1 + p T \)
good5 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 8 T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 + 2 T + p^{3} T^{2} \)
19 \( 1 - 124 T + p^{3} T^{2} \)
23 \( 1 - 76 T + p^{3} T^{2} \)
29 \( 1 + 254 T + p^{3} T^{2} \)
31 \( 1 + 72 T + p^{3} T^{2} \)
37 \( 1 + 398 T + p^{3} T^{2} \)
41 \( 1 - 462 T + p^{3} T^{2} \)
43 \( 1 + 212 T + p^{3} T^{2} \)
47 \( 1 + 264 T + p^{3} T^{2} \)
53 \( 1 - 162 T + p^{3} T^{2} \)
59 \( 1 - 772 T + p^{3} T^{2} \)
61 \( 1 + 30 T + p^{3} T^{2} \)
67 \( 1 - 764 T + p^{3} T^{2} \)
71 \( 1 + 236 T + p^{3} T^{2} \)
73 \( 1 - 418 T + p^{3} T^{2} \)
79 \( 1 - 552 T + p^{3} T^{2} \)
83 \( 1 + 1036 T + p^{3} T^{2} \)
89 \( 1 - 30 T + p^{3} T^{2} \)
97 \( 1 + 1190 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.377566873177240010680911729369, −8.463483541318776965749636607769, −7.44483352704001028430906237036, −6.83987316622874127837787707642, −5.78672464866936143945244738395, −5.27163876377852061747349790731, −3.96495852713497639523618853738, −3.31696072332016564908850277595, −1.78694931127548525177286581025, −0.64380887177876923145162469506, 0.64380887177876923145162469506, 1.78694931127548525177286581025, 3.31696072332016564908850277595, 3.96495852713497639523618853738, 5.27163876377852061747349790731, 5.78672464866936143945244738395, 6.83987316622874127837787707642, 7.44483352704001028430906237036, 8.463483541318776965749636607769, 9.377566873177240010680911729369

Graph of the $Z$-function along the critical line