L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1 − 1.73i)5-s + (2.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)11-s − 13-s + 1.99·15-s + (−0.5 − 0.866i)19-s + (−2 + 1.73i)21-s + (0.500 − 0.866i)25-s + 0.999·27-s − 4·29-s + (4.5 − 7.79i)31-s + (0.999 + 1.73i)33-s + (−1.00 − 5.19i)35-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.447 − 0.774i)5-s + (0.944 + 0.327i)7-s + (−0.166 − 0.288i)9-s + (0.301 − 0.522i)11-s − 0.277·13-s + 0.516·15-s + (−0.114 − 0.198i)19-s + (−0.436 + 0.377i)21-s + (0.100 − 0.173i)25-s + 0.192·27-s − 0.742·29-s + (0.808 − 1.39i)31-s + (0.174 + 0.301i)33-s + (−0.169 − 0.878i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.357683023\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.357683023\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-2.5 - 0.866i)T \) |
good | 5 | \( 1 + (1 + 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (-4.5 + 7.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 10T + 41T^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6 + 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 + 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 + 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (-1.5 + 2.59i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (8 + 13.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.477191695333320814957310857588, −8.481396352938125284172544178984, −8.254018778702492115777506924569, −7.08163165525021728070270361867, −5.97964260102715271669081659313, −5.13653719688575043156734045298, −4.50502807992162798762464773909, −3.59685979068361580506779266444, −2.13583310164504635671573446885, −0.64932361999403692223442091207,
1.28321134617165548338199209428, 2.45317377498539685267781440697, 3.68648320270898682946041825387, 4.66765624712245348126363793793, 5.55468133091786244544464604440, 6.73774166015014687828169200840, 7.20585986520427073943311186500, 7.940306457245540168972898399719, 8.755643028478969921157161689300, 9.879539926584021565820913610726