Properties

Label 8-1344e4-1.1-c1e4-0-20
Degree $8$
Conductor $3.263\times 10^{12}$
Sign $1$
Analytic cond. $13264.9$
Root an. cond. $3.27595$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 9-s + 8·13-s + 19·25-s − 24·37-s − 6·45-s − 11·49-s − 18·53-s + 16·61-s − 48·65-s + 48·73-s + 12·101-s + 12·109-s − 24·113-s + 8·117-s − 5·121-s − 66·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + ⋯
L(s)  = 1  − 2.68·5-s + 1/3·9-s + 2.21·13-s + 19/5·25-s − 3.94·37-s − 0.894·45-s − 1.57·49-s − 2.47·53-s + 2.04·61-s − 5.95·65-s + 5.61·73-s + 1.19·101-s + 1.14·109-s − 2.25·113-s + 0.739·117-s − 0.454·121-s − 5.90·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(13264.9\)
Root analytic conductor: \(3.27595\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.628119018\)
\(L(\frac12)\) \(\approx\) \(1.628119018\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 5 T^{2} - 96 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 31 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$$\times$$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )( 1 + 59 T^{2} + p^{2} T^{4} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 9 T + 80 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 37 T^{2} - 2112 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 8 T + 3 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 - 13 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )^{2}( 1 - 7 T + p T^{2} )^{2} \)
79$C_2^3$ \( 1 + 133 T^{2} + 11448 T^{4} + 133 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )^{2}( 1 + 19 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.78282165062206622191406921291, −6.66913816317918889745690932381, −6.60708691869720987702872149222, −6.35707414233252814269963233906, −5.97429061832092713126736282267, −5.93260039119670303374738713895, −5.36168345650357830301906189467, −5.15450605305712353113277637041, −4.98703405998182060370574010417, −4.95593138404392457615526334723, −4.72117772292414441265933850874, −4.07553776116679923193109711420, −4.01796627633448204520315930169, −3.82038357252762408895905176482, −3.79771425443610028903840505899, −3.37855125958545377966365934512, −3.29651242218916305661339182808, −3.16064146809860865262126742855, −2.64075685110618720270407757723, −2.22740284118668090368785118892, −1.76897921565750791015094913909, −1.59531325911626369519157234188, −1.23425780062628241436241687421, −0.52339953347459168948802790066, −0.47500003588282777415741738689, 0.47500003588282777415741738689, 0.52339953347459168948802790066, 1.23425780062628241436241687421, 1.59531325911626369519157234188, 1.76897921565750791015094913909, 2.22740284118668090368785118892, 2.64075685110618720270407757723, 3.16064146809860865262126742855, 3.29651242218916305661339182808, 3.37855125958545377966365934512, 3.79771425443610028903840505899, 3.82038357252762408895905176482, 4.01796627633448204520315930169, 4.07553776116679923193109711420, 4.72117772292414441265933850874, 4.95593138404392457615526334723, 4.98703405998182060370574010417, 5.15450605305712353113277637041, 5.36168345650357830301906189467, 5.93260039119670303374738713895, 5.97429061832092713126736282267, 6.35707414233252814269963233906, 6.60708691869720987702872149222, 6.66913816317918889745690932381, 6.78282165062206622191406921291

Graph of the $Z$-function along the critical line