Properties

Label 4-1344e2-1.1-c0e2-0-5
Degree $4$
Conductor $1806336$
Sign $1$
Analytic cond. $0.449896$
Root an. cond. $0.818989$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 4·13-s + 2·25-s − 49-s − 4·61-s + 81-s − 4·117-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 9-s + 4·13-s + 2·25-s − 49-s − 4·61-s + 81-s − 4·117-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1806336\)    =    \(2^{12} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.449896\)
Root analytic conductor: \(0.818989\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1806336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.272912672\)
\(L(\frac12)\) \(\approx\) \(1.272912672\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_1$ \( ( 1 - T )^{4} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$ \( ( 1 + T )^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11200839042751556043772798304, −9.354954356029106958045375089875, −9.102455760899311584670151755378, −8.741660049457947189601230705677, −8.402172298659248132592523459432, −8.292130196846028609239823856448, −7.67004482517405927059557654228, −7.13977745847292536294915545202, −6.42183063986854377059349482217, −6.38460940670539142674041580352, −5.82341410171504914367181872037, −5.77339543976341204223818388542, −4.79153249099958305568443874700, −4.65190651024797205426139835890, −3.80971667961244198549523359263, −3.32011807519595132741865495142, −3.28439258559214431625703184604, −2.47495016111105270558228759483, −1.40486403518532242249004867753, −1.20403815503451087888988435018, 1.20403815503451087888988435018, 1.40486403518532242249004867753, 2.47495016111105270558228759483, 3.28439258559214431625703184604, 3.32011807519595132741865495142, 3.80971667961244198549523359263, 4.65190651024797205426139835890, 4.79153249099958305568443874700, 5.77339543976341204223818388542, 5.82341410171504914367181872037, 6.38460940670539142674041580352, 6.42183063986854377059349482217, 7.13977745847292536294915545202, 7.67004482517405927059557654228, 8.292130196846028609239823856448, 8.402172298659248132592523459432, 8.741660049457947189601230705677, 9.102455760899311584670151755378, 9.354954356029106958045375089875, 10.11200839042751556043772798304

Graph of the $Z$-function along the critical line