Properties

Label 8-1344e4-1.1-c0e4-0-2
Degree $8$
Conductor $3.263\times 10^{12}$
Sign $1$
Analytic cond. $0.202407$
Root an. cond. $0.818989$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 2·25-s − 6·37-s + 49-s + 2·73-s − 8·97-s + 6·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 9-s + 2·25-s − 6·37-s + 49-s + 2·73-s − 8·97-s + 6·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.202407\)
Root analytic conductor: \(0.818989\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.059346665\)
\(L(\frac12)\) \(\approx\) \(1.059346665\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
good5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{4} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_1$ \( ( 1 + T )^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.04443811950031341510544771084, −6.87501905954004038034005068647, −6.77261580839735768819170297878, −6.71263271333190800662654143049, −6.24508700950942968374562384530, −5.84351289002464920713512138878, −5.66656599874951787414939501177, −5.58575262046103692319798004497, −5.38537914834218028578613808840, −4.91970309487637826133600981641, −4.82638861558338474643732850872, −4.73069243349022429596076097372, −4.52946621521874778386516169117, −4.03345799462827841015483671990, −3.73619799099786836484352427627, −3.71094013236821201846506839146, −3.37908656650643418063308204500, −3.21614537750747988439206086846, −2.84874015659539083664884360037, −2.42190489136619635685284795295, −2.32637257126767035231021023640, −1.71936963225688645783096004183, −1.56163922652239484991610100398, −1.40439597545373163190001410182, −0.68323814532125204780336630358, 0.68323814532125204780336630358, 1.40439597545373163190001410182, 1.56163922652239484991610100398, 1.71936963225688645783096004183, 2.32637257126767035231021023640, 2.42190489136619635685284795295, 2.84874015659539083664884360037, 3.21614537750747988439206086846, 3.37908656650643418063308204500, 3.71094013236821201846506839146, 3.73619799099786836484352427627, 4.03345799462827841015483671990, 4.52946621521874778386516169117, 4.73069243349022429596076097372, 4.82638861558338474643732850872, 4.91970309487637826133600981641, 5.38537914834218028578613808840, 5.58575262046103692319798004497, 5.66656599874951787414939501177, 5.84351289002464920713512138878, 6.24508700950942968374562384530, 6.71263271333190800662654143049, 6.77261580839735768819170297878, 6.87501905954004038034005068647, 7.04443811950031341510544771084

Graph of the $Z$-function along the critical line