| L(s) = 1 | + 6·37-s + 3·49-s − 6·103-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
| L(s) = 1 | + 6·37-s + 3·49-s − 6·103-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{24} \cdot 37^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{24} \cdot 37^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6903641746\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6903641746\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( ( 1 - T + T^{2} )^{6} \) |
| good | 5 | \( 1 - T^{12} + T^{24} \) |
| 7 | \( ( 1 - T^{2} + T^{4} )^{3}( 1 - T^{6} + T^{12} ) \) |
| 11 | \( ( 1 - T + T^{2} )^{6}( 1 + T + T^{2} )^{6} \) |
| 13 | \( ( 1 + T^{2} )^{6}( 1 + T^{3} + T^{6} )^{2} \) |
| 17 | \( 1 - T^{12} + T^{24} \) |
| 19 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 - T^{6} + T^{12} ) \) |
| 23 | \( ( 1 - T^{4} + T^{8} )^{3} \) |
| 29 | \( ( 1 - T^{4} + T^{8} )^{3} \) |
| 31 | \( ( 1 + T^{3} + T^{6} )^{2}( 1 - T^{6} + T^{12} ) \) |
| 41 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 + T^{3} + T^{6} )^{2} \) |
| 43 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 - T^{6} + T^{12} ) \) |
| 47 | \( ( 1 - T^{2} + T^{4} )^{6} \) |
| 53 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 59 | \( 1 - T^{12} + T^{24} \) |
| 61 | \( ( 1 + T^{3} + T^{6} )^{2}( 1 - T^{6} + T^{12} ) \) |
| 67 | \( ( 1 - T^{2} + T^{4} )^{3}( 1 - T^{6} + T^{12} ) \) |
| 71 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 73 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 79 | \( ( 1 - T^{2} + T^{4} )^{3}( 1 - T^{3} + T^{6} )^{2} \) |
| 83 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 89 | \( 1 - T^{12} + T^{24} \) |
| 97 | \( ( 1 + T^{3} + T^{6} )^{2}( 1 - T^{6} + T^{12} ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.32841181680964320142224985181, −3.12801713952591114319004930112, −2.92100633790253789288313397730, −2.77552250450566858781804456900, −2.76961957613150666642015515371, −2.73780296980753059833261498769, −2.70439616070906673974128368198, −2.58114987280814233221651109172, −2.52521572890585504187625238385, −2.51177254433627628489867784321, −2.49627958687087473392225619747, −2.47150732919114263874680433570, −2.43410113858641946287121224221, −2.00522407425586386852916414988, −1.89705613340982469175214563349, −1.72905186129401859337706077276, −1.67201343267568693463954039962, −1.38234501968309586224638023755, −1.38052324666097510762667824290, −1.31943291980369880571002887943, −1.24084188896274624280642742284, −1.14295224621796974807236369233, −1.02427042327457541716754468361, −0.813479760721868280176754139011, −0.39427750236906976356026398143,
0.39427750236906976356026398143, 0.813479760721868280176754139011, 1.02427042327457541716754468361, 1.14295224621796974807236369233, 1.24084188896274624280642742284, 1.31943291980369880571002887943, 1.38052324666097510762667824290, 1.38234501968309586224638023755, 1.67201343267568693463954039962, 1.72905186129401859337706077276, 1.89705613340982469175214563349, 2.00522407425586386852916414988, 2.43410113858641946287121224221, 2.47150732919114263874680433570, 2.49627958687087473392225619747, 2.51177254433627628489867784321, 2.52521572890585504187625238385, 2.58114987280814233221651109172, 2.70439616070906673974128368198, 2.73780296980753059833261498769, 2.76961957613150666642015515371, 2.77552250450566858781804456900, 2.92100633790253789288313397730, 3.12801713952591114319004930112, 3.32841181680964320142224985181
Plot not available for L-functions of degree greater than 10.