L(s) = 1 | − 1.48i·2-s − 0.203·4-s + (0.154 − 0.267i)5-s − 2.66i·8-s + (−0.396 − 0.228i)10-s + (−2.73 + 1.58i)11-s + (3.00 − 1.73i)13-s − 4.36·16-s + (2.44 − 4.22i)17-s + (4.62 − 2.67i)19-s + (−0.0314 + 0.0544i)20-s + (2.34 + 4.06i)22-s + (−5.17 − 2.98i)23-s + (2.45 + 4.24i)25-s + (−2.57 − 4.45i)26-s + ⋯ |
L(s) = 1 | − 1.04i·2-s − 0.101·4-s + (0.0689 − 0.119i)5-s − 0.942i·8-s + (−0.125 − 0.0723i)10-s + (−0.825 + 0.476i)11-s + (0.833 − 0.481i)13-s − 1.09·16-s + (0.592 − 1.02i)17-s + (1.06 − 0.612i)19-s + (−0.00702 + 0.0121i)20-s + (0.500 + 0.866i)22-s + (−1.07 − 0.622i)23-s + (0.490 + 0.849i)25-s + (−0.504 − 0.874i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.861 + 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.668713523\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.668713523\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 1.48iT - 2T^{2} \) |
| 5 | \( 1 + (-0.154 + 0.267i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.73 - 1.58i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.00 + 1.73i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.44 + 4.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.62 + 2.67i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.17 + 2.98i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.70 + 1.56i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.52iT - 31T^{2} \) |
| 37 | \( 1 + (5.92 + 10.2i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.58 + 4.48i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.75 + 4.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 8.46T + 47T^{2} \) |
| 53 | \( 1 + (0.0740 + 0.0427i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 2.08T + 59T^{2} \) |
| 61 | \( 1 + 5.42iT - 61T^{2} \) |
| 67 | \( 1 + 0.110T + 67T^{2} \) |
| 71 | \( 1 - 7.78iT - 71T^{2} \) |
| 73 | \( 1 + (8.32 + 4.80i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.13T + 79T^{2} \) |
| 83 | \( 1 + (-4.42 + 7.66i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.936 - 1.62i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.9 + 6.34i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.451880764457602445764912741810, −8.780209425240530442330806894897, −7.51873702194332303026125329678, −7.07919049509013130071563140252, −5.75607888353584585665595921300, −5.01129604381553607011959700675, −3.75131158937659299403034444985, −2.98579496209273933063182368763, −1.98306966036975292655755886006, −0.69003189293825921586900213711,
1.60975329536825823153588055147, 2.95328930075473802393408859207, 4.05534597780292782644335419850, 5.32425027786411831218736875671, 5.93866113104438018353266943603, 6.53861560779605379186533006696, 7.72805568679030685620365293203, 8.008766285597220250472965862680, 8.863178490049323522057260616144, 9.962727968024243317628258888544