L(s) = 1 | + 2.08i·2-s − 2.34·4-s + (1.65 − 2.86i)5-s − 0.717i·8-s + (5.96 + 3.44i)10-s + (2.30 − 1.33i)11-s + (−2.11 + 1.21i)13-s − 3.19·16-s + (3.59 − 6.21i)17-s + (4.24 − 2.45i)19-s + (−3.87 + 6.70i)20-s + (2.77 + 4.80i)22-s + (−4.32 − 2.49i)23-s + (−2.96 − 5.12i)25-s + (−2.54 − 4.40i)26-s + ⋯ |
L(s) = 1 | + 1.47i·2-s − 1.17·4-s + (0.738 − 1.27i)5-s − 0.253i·8-s + (1.88 + 1.08i)10-s + (0.694 − 0.401i)11-s + (−0.585 + 0.338i)13-s − 0.798·16-s + (0.870 − 1.50i)17-s + (0.974 − 0.562i)19-s + (−0.866 + 1.50i)20-s + (0.591 + 1.02i)22-s + (−0.901 − 0.520i)23-s + (−0.592 − 1.02i)25-s + (−0.498 − 0.863i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.790451729\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.790451729\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.08iT - 2T^{2} \) |
| 5 | \( 1 + (-1.65 + 2.86i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.30 + 1.33i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.11 - 1.21i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.59 + 6.21i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.24 + 2.45i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.32 + 2.49i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.50 + 3.17i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.66iT - 31T^{2} \) |
| 37 | \( 1 + (-0.844 - 1.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.553 - 0.958i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.93 + 5.08i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 4.88T + 47T^{2} \) |
| 53 | \( 1 + (-8.94 - 5.16i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 5.13T + 59T^{2} \) |
| 61 | \( 1 - 5.13iT - 61T^{2} \) |
| 67 | \( 1 - 8.33T + 67T^{2} \) |
| 71 | \( 1 - 2.07iT - 71T^{2} \) |
| 73 | \( 1 + (-6.94 - 4.00i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.01T + 79T^{2} \) |
| 83 | \( 1 + (-1.04 + 1.80i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.541 + 0.937i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.47 - 5.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.341081463434799375161258967275, −8.893965103907463016479055644574, −7.916731774698168092489741049406, −7.26504845188230668883081413460, −6.34170436690300313095517761887, −5.45432768213136967019294382731, −5.10009607947125980129253435181, −4.06895196645370926005841428640, −2.35808534872438115897804397363, −0.78424642002971772145851892237,
1.48154558981336014020474987391, 2.24016379437728228644861871147, 3.36627272759339901332915482440, 3.82427220413243381118583209114, 5.32791359873970462678609983518, 6.22481453043599695362964909473, 7.09673144918264289326541526339, 8.009455658504080998620779730618, 9.339108042475403878654876618639, 9.889951862171307166969803789967