L(s) = 1 | − 0.641i·2-s + 1.58·4-s + (−1.10 + 1.91i)5-s − 2.30i·8-s + (1.22 + 0.709i)10-s + (−2.93 + 1.69i)11-s + (−1.56 + 0.901i)13-s + 1.69·16-s + (−2.98 + 5.16i)17-s + (1.42 − 0.822i)19-s + (−1.75 + 3.04i)20-s + (1.08 + 1.88i)22-s + (2.05 + 1.18i)23-s + (0.0556 + 0.0963i)25-s + (0.578 + 1.00i)26-s + ⋯ |
L(s) = 1 | − 0.453i·2-s + 0.794·4-s + (−0.494 + 0.856i)5-s − 0.813i·8-s + (0.388 + 0.224i)10-s + (−0.885 + 0.511i)11-s + (−0.432 + 0.249i)13-s + 0.424·16-s + (−0.723 + 1.25i)17-s + (0.326 − 0.188i)19-s + (−0.392 + 0.680i)20-s + (0.232 + 0.401i)22-s + (0.428 + 0.247i)23-s + (0.0111 + 0.0192i)25-s + (0.113 + 0.196i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.287467215\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.287467215\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.641iT - 2T^{2} \) |
| 5 | \( 1 + (1.10 - 1.91i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.93 - 1.69i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.56 - 0.901i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.98 - 5.16i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.42 + 0.822i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.05 - 1.18i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.44 + 1.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 10.7iT - 31T^{2} \) |
| 37 | \( 1 + (0.849 + 1.47i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.455 - 0.788i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.96 - 3.39i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.246T + 47T^{2} \) |
| 53 | \( 1 + (-6.82 - 3.93i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 10.7T + 59T^{2} \) |
| 61 | \( 1 + 1.41iT - 61T^{2} \) |
| 67 | \( 1 + 7.98T + 67T^{2} \) |
| 71 | \( 1 - 12.1iT - 71T^{2} \) |
| 73 | \( 1 + (-0.369 - 0.213i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 4.98T + 79T^{2} \) |
| 83 | \( 1 + (-4.28 + 7.42i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.26 - 9.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.30 + 3.63i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17359019967780631318296781009, −9.116958296211836332077590301529, −8.022908319727111043661306931813, −7.21513455904322043757396916356, −6.79955355700012677883589227314, −5.74871276212604879349738613357, −4.56779433122907776677997300412, −3.44925815300090062996728005051, −2.71156985794514929222195022035, −1.67195414296029963960180952817,
0.49150451625913265953908348141, 2.20843874768207359091829018669, 3.15272776438664410417859269950, 4.56724694648442277860209629498, 5.27682115700268417529250357935, 6.09284655047091435258740078864, 7.20066535194150633635223468048, 7.71235497765338841540104674018, 8.472909562136739714139458706654, 9.270025333204962937658456090602