Properties

Label 2-1323-63.25-c1-0-14
Degree $2$
Conductor $1323$
Sign $0.159 - 0.987i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Error: no document with id 270871356 found in table mf_hecke_traces.

Error: table True does not exist

Normalization:  

Dirichlet series

L(s)  = 1  + 1.84·2-s + 1.39·4-s + (−0.667 + 1.15i)5-s − 1.12·8-s + (−1.22 + 2.12i)10-s + (0.756 + 1.31i)11-s + (2.58 + 4.48i)13-s − 4.84·16-s + (0.774 − 1.34i)17-s + (1.25 + 2.16i)19-s + (−0.927 + 1.60i)20-s + (1.39 + 2.41i)22-s + (−3.68 + 6.37i)23-s + (1.60 + 2.78i)25-s + (4.76 + 8.25i)26-s + ⋯
L(s)  = 1  + 1.30·2-s + 0.695·4-s + (−0.298 + 0.516i)5-s − 0.396·8-s + (−0.388 + 0.673i)10-s + (0.228 + 0.395i)11-s + (0.717 + 1.24i)13-s − 1.21·16-s + (0.187 − 0.325i)17-s + (0.287 + 0.497i)19-s + (−0.207 + 0.359i)20-s + (0.296 + 0.514i)22-s + (−0.767 + 1.32i)23-s + (0.321 + 0.557i)25-s + (0.934 + 1.61i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.159 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.159 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $0.159 - 0.987i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (802, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 0.159 - 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.658394559\)
\(L(\frac12)\) \(\approx\) \(2.658394559\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 1.84T + 2T^{2} \)
5 \( 1 + (0.667 - 1.15i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-0.756 - 1.31i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-2.58 - 4.48i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-0.774 + 1.34i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.25 - 2.16i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.68 - 6.37i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.0309 + 0.0536i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 3.84T + 31T^{2} \)
37 \( 1 + (0.281 + 0.487i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.51 - 7.81i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-5.09 + 8.83i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 9.51T + 47T^{2} \)
53 \( 1 + (0.755 - 1.30i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + 8.44T + 59T^{2} \)
61 \( 1 + 3.23T + 61T^{2} \)
67 \( 1 - 6.93T + 67T^{2} \)
71 \( 1 - 12.3T + 71T^{2} \)
73 \( 1 + (-1.37 + 2.38i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + 5.91T + 79T^{2} \)
83 \( 1 + (-2.80 + 4.85i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-0.703 - 1.21i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-6.09 + 10.5i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.716143231115287024318488548582, −9.166758366159932276170100877658, −8.011522104327768930153920223458, −7.07246077425080348325543312608, −6.37017774794438543251331601927, −5.58052949096504849407966454260, −4.57195287755826674309291029601, −3.82591783916503433755947554713, −3.09841296048539237113105413520, −1.75472250703718710996755910379, 0.72962784186715403578149165869, 2.59196752696090038464740569431, 3.49879582973067264842779433142, 4.34677452643856105038174837853, 5.09819334139767424879615520597, 6.00154784680940492330648626434, 6.54923118244629450151733084053, 7.951136714284638836037677493805, 8.471838058297990796614727892172, 9.384478417980635023442185650623

Graph of the $Z$-function along the critical line