L(s) = 1 | + (0.809 + 0.587i)3-s + (−1.19 + 3.66i)5-s + (0.190 − 0.138i)7-s + (0.309 + 0.951i)9-s + (3.30 − 0.224i)11-s + (−1.92 − 5.93i)13-s + (−3.11 + 2.26i)15-s + (0.736 − 2.26i)17-s + (4.11 + 2.99i)19-s + 0.236·21-s − 0.236·23-s + (−7.97 − 5.79i)25-s + (−0.309 + 0.951i)27-s + (−3.61 + 2.62i)29-s + (−1.97 − 6.06i)31-s + ⋯ |
L(s) = 1 | + (0.467 + 0.339i)3-s + (−0.532 + 1.63i)5-s + (0.0721 − 0.0524i)7-s + (0.103 + 0.317i)9-s + (0.997 − 0.0676i)11-s + (−0.534 − 1.64i)13-s + (−0.805 + 0.584i)15-s + (0.178 − 0.549i)17-s + (0.944 + 0.686i)19-s + 0.0515·21-s − 0.0492·23-s + (−1.59 − 1.15i)25-s + (−0.0594 + 0.183i)27-s + (−0.671 + 0.488i)29-s + (−0.354 − 1.09i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03884 + 0.543784i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03884 + 0.543784i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-3.30 + 0.224i)T \) |
good | 5 | \( 1 + (1.19 - 3.66i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-0.190 + 0.138i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.92 + 5.93i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.736 + 2.26i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.11 - 2.99i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 0.236T + 23T^{2} \) |
| 29 | \( 1 + (3.61 - 2.62i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.97 + 6.06i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-3.04 + 2.21i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (7.66 + 5.56i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 9.47T + 43T^{2} \) |
| 47 | \( 1 + (2.92 + 2.12i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.02 - 6.24i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (1.73 - 1.26i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.809 - 2.48i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 0.145T + 67T^{2} \) |
| 71 | \( 1 + (0.427 - 1.31i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (2.61 - 1.90i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-4.39 - 13.5i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-4.78 + 14.7i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (1.57 + 4.84i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.75903316016233931211234401340, −12.28112947770593293046945313118, −11.24020184708588506911837919634, −10.38609749642348924862683196825, −9.457829417836284518158699320584, −7.84940340176159920000411899183, −7.21229331240817175452322730230, −5.72463439076555318767189826877, −3.80701222166479103886419245729, −2.85714431357859294243242972176,
1.52861188049291667370098060658, 3.92678294200077728056217813896, 4.98008397574263834196803367124, 6.71467686384439527403880780588, 7.937834846671476902925844107696, 9.010257560971696671008778223460, 9.478502002555345129627145528582, 11.57651603177442558553511684328, 12.06914631370668899927657244885, 13.06763164629855910138162413245