Properties

Label 2-1305-87.17-c1-0-21
Degree $2$
Conductor $1305$
Sign $-0.784 + 0.620i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.24 − 1.24i)2-s + 1.11i·4-s + 5-s − 2.67·7-s + (−1.10 + 1.10i)8-s + (−1.24 − 1.24i)10-s + (0.991 + 0.991i)11-s − 2.00i·13-s + (3.34 + 3.34i)14-s + 4.98·16-s + (2.41 + 2.41i)17-s + (4.17 − 4.17i)19-s + 1.11i·20-s − 2.47i·22-s + 0.783i·23-s + ⋯
L(s)  = 1  + (−0.882 − 0.882i)2-s + 0.559i·4-s + 0.447·5-s − 1.01·7-s + (−0.389 + 0.389i)8-s + (−0.394 − 0.394i)10-s + (0.298 + 0.298i)11-s − 0.554i·13-s + (0.893 + 0.893i)14-s + 1.24·16-s + (0.585 + 0.585i)17-s + (0.956 − 0.956i)19-s + 0.250i·20-s − 0.527i·22-s + 0.163i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 + 0.620i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.784 + 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-0.784 + 0.620i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (1061, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -0.784 + 0.620i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7656229281\)
\(L(\frac12)\) \(\approx\) \(0.7656229281\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
29 \( 1 + (5.22 - 1.30i)T \)
good2 \( 1 + (1.24 + 1.24i)T + 2iT^{2} \)
7 \( 1 + 2.67T + 7T^{2} \)
11 \( 1 + (-0.991 - 0.991i)T + 11iT^{2} \)
13 \( 1 + 2.00iT - 13T^{2} \)
17 \( 1 + (-2.41 - 2.41i)T + 17iT^{2} \)
19 \( 1 + (-4.17 + 4.17i)T - 19iT^{2} \)
23 \( 1 - 0.783iT - 23T^{2} \)
31 \( 1 + (-3.26 + 3.26i)T - 31iT^{2} \)
37 \( 1 + (6.88 + 6.88i)T + 37iT^{2} \)
41 \( 1 + (-3.90 + 3.90i)T - 41iT^{2} \)
43 \( 1 + (-1.51 + 1.51i)T - 43iT^{2} \)
47 \( 1 + (1.81 - 1.81i)T - 47iT^{2} \)
53 \( 1 - 0.590iT - 53T^{2} \)
59 \( 1 + 5.39iT - 59T^{2} \)
61 \( 1 + (-4.38 + 4.38i)T - 61iT^{2} \)
67 \( 1 + 12.5iT - 67T^{2} \)
71 \( 1 - 9.09T + 71T^{2} \)
73 \( 1 + (-0.687 - 0.687i)T + 73iT^{2} \)
79 \( 1 + (6.86 - 6.86i)T - 79iT^{2} \)
83 \( 1 + 4.93iT - 83T^{2} \)
89 \( 1 + (8.02 + 8.02i)T + 89iT^{2} \)
97 \( 1 + (1.19 + 1.19i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.525001734606603144684261726904, −8.926254934450976069895020794999, −7.898881087883597188730056115180, −6.97939466817907181292480635146, −5.95493007143683436931178043517, −5.26465895196060456721844718395, −3.67930821299809520322922039998, −2.88669468437635246514456384150, −1.79944656114709311826803323458, −0.48901016518655505769443980141, 1.17573496706507530946572226617, 2.93879716527359298291044463144, 3.77790899719736979629408229479, 5.31260985271184404807332551240, 6.11655008630435588811102910200, 6.76646712863117863400988665037, 7.48063566634152254321204239865, 8.381021338425958879430418861219, 9.152392706027714626020492610442, 9.795565510974734169510750900871

Graph of the $Z$-function along the critical line