Properties

Label 4-1300e2-1.1-c0e2-0-0
Degree $4$
Conductor $1690000$
Sign $1$
Analytic cond. $0.420921$
Root an. cond. $0.805471$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·9-s − 2·11-s + 16-s − 4·19-s + 2·29-s − 2·31-s + 2·36-s + 2·44-s + 49-s + 2·59-s − 2·61-s − 64-s + 4·71-s + 4·76-s + 3·81-s + 4·99-s − 2·101-s − 2·116-s + 121-s + 2·124-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + ⋯
L(s)  = 1  − 4-s − 2·9-s − 2·11-s + 16-s − 4·19-s + 2·29-s − 2·31-s + 2·36-s + 2·44-s + 49-s + 2·59-s − 2·61-s − 64-s + 4·71-s + 4·76-s + 3·81-s + 4·99-s − 2·101-s − 2·116-s + 121-s + 2·124-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1690000\)    =    \(2^{4} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.420921\)
Root analytic conductor: \(0.805471\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1690000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2360238743\)
\(L(\frac12)\) \(\approx\) \(0.2360238743\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + T^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_1$ \( ( 1 + T )^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$ \( ( 1 - T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 - T^{2} + T^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14939268861253547092188133809, −9.590482463971844013884246458732, −9.072778385182867909067229446814, −8.606835227133804393802160980483, −8.566172911610992649824031318143, −8.083584360028839262414322171855, −8.023252877585771856752682921398, −7.28180024083949205942801585624, −6.46400659371258947028069054052, −6.44802459365064090393557607418, −5.69118940197869931846961230451, −5.53816751989610163750102876166, −4.84044405615061369955862994604, −4.81022527178156155475086427574, −3.81166120839182335378966351532, −3.79819652603281739786361280169, −2.66793167606141221108087714194, −2.60243145073435821673813454710, −2.02299184463387530260001747009, −0.38948178818093216244514842656, 0.38948178818093216244514842656, 2.02299184463387530260001747009, 2.60243145073435821673813454710, 2.66793167606141221108087714194, 3.79819652603281739786361280169, 3.81166120839182335378966351532, 4.81022527178156155475086427574, 4.84044405615061369955862994604, 5.53816751989610163750102876166, 5.69118940197869931846961230451, 6.44802459365064090393557607418, 6.46400659371258947028069054052, 7.28180024083949205942801585624, 8.023252877585771856752682921398, 8.083584360028839262414322171855, 8.566172911610992649824031318143, 8.606835227133804393802160980483, 9.072778385182867909067229446814, 9.590482463971844013884246458732, 10.14939268861253547092188133809

Graph of the $Z$-function along the critical line