L(s) = 1 | + (−1.36 − 0.366i)2-s + (−4.18 − 1.12i)3-s + (1.73 + i)4-s + (−2.95 + 4.03i)5-s + (5.31 + 3.06i)6-s + (0.174 + 0.652i)7-s + (−1.99 − 2i)8-s + (8.48 + 4.90i)9-s + (5.51 − 4.42i)10-s + (17.5 − 10.1i)11-s + (−6.13 − 6.13i)12-s + (−12.7 − 2.54i)13-s − 0.955i·14-s + (16.9 − 13.5i)15-s + (1.99 + 3.46i)16-s + (19.6 − 5.27i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−1.39 − 0.374i)3-s + (0.433 + 0.250i)4-s + (−0.590 + 0.806i)5-s + (0.885 + 0.511i)6-s + (0.0249 + 0.0932i)7-s + (−0.249 − 0.250i)8-s + (0.943 + 0.544i)9-s + (0.551 − 0.442i)10-s + (1.59 − 0.918i)11-s + (−0.511 − 0.511i)12-s + (−0.980 − 0.195i)13-s − 0.0682i·14-s + (1.12 − 0.905i)15-s + (0.124 + 0.216i)16-s + (1.15 − 0.310i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.565186 - 0.159422i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.565186 - 0.159422i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 5 | \( 1 + (2.95 - 4.03i)T \) |
| 13 | \( 1 + (12.7 + 2.54i)T \) |
good | 3 | \( 1 + (4.18 + 1.12i)T + (7.79 + 4.5i)T^{2} \) |
| 7 | \( 1 + (-0.174 - 0.652i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-17.5 + 10.1i)T + (60.5 - 104. i)T^{2} \) |
| 17 | \( 1 + (-19.6 + 5.27i)T + (250. - 144.5i)T^{2} \) |
| 19 | \( 1 + (-4.90 + 8.49i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-34.7 - 9.29i)T + (458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (-7.57 + 4.37i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 - 50.2iT - 961T^{2} \) |
| 37 | \( 1 + (4.96 + 1.32i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (15.8 - 9.15i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (13.5 + 50.4i)T + (-1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (-27.7 + 27.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (0.945 - 0.945i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (-23.3 + 40.4i)T + (-1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (16.7 - 29.0i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-86.8 - 23.2i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (3.19 + 1.84i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + (-41.8 - 41.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 115. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (3.31 + 3.31i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-18.0 - 31.1i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (1.76 + 6.57i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31647406631558685653210098025, −11.79070149057090666737980130779, −11.11791715287890380227037305702, −10.15206110282771414304147557862, −8.798207581380213895644201577551, −7.23265177697021414638545662335, −6.68388716731517296106071564364, −5.32164283062430761656087899994, −3.32010496823456489654392001005, −0.837873989563123357779744138844,
1.03550767665347233799113066923, 4.23931556264864817514851344758, 5.30268814140093835059656457876, 6.61646550773981166726945465558, 7.69452318047644477774130535075, 9.213211250904038069283307747733, 9.951880948191443129151048982427, 11.22103483921194001985417952120, 12.00748789730725146673209257198, 12.52324847945677005511396090908