L(s) = 1 | + (0.866 + 0.5i)2-s + (1.45 + 0.837i)3-s + (0.499 + 0.866i)4-s + (−1.67 − 1.48i)5-s + (0.837 + 1.45i)6-s + (1.56 − 0.903i)7-s + 0.999i·8-s + (−0.0969 − 0.167i)9-s + (−0.710 − 2.12i)10-s + (−3.22 + 5.58i)11-s + 1.67i·12-s + (−1.98 − 3.01i)13-s + 1.80·14-s + (−1.18 − 3.55i)15-s + (−0.5 + 0.866i)16-s + (0.416 − 0.240i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.837 + 0.483i)3-s + (0.249 + 0.433i)4-s + (−0.749 − 0.662i)5-s + (0.341 + 0.592i)6-s + (0.591 − 0.341i)7-s + 0.353i·8-s + (−0.0323 − 0.0559i)9-s + (−0.224 − 0.670i)10-s + (−0.971 + 1.68i)11-s + 0.483i·12-s + (−0.549 − 0.835i)13-s + 0.482·14-s + (−0.307 − 0.917i)15-s + (−0.125 + 0.216i)16-s + (0.101 − 0.0583i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 - 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.804 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.55719 + 0.513083i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55719 + 0.513083i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (1.67 + 1.48i)T \) |
| 13 | \( 1 + (1.98 + 3.01i)T \) |
good | 3 | \( 1 + (-1.45 - 0.837i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-1.56 + 0.903i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.22 - 5.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.416 + 0.240i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.14 + 5.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.16 - 3.55i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 + 2.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.25T + 31T^{2} \) |
| 37 | \( 1 + (2.65 + 1.53i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.75 - 6.50i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 + i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2.19iT - 47T^{2} \) |
| 53 | \( 1 - 0.906iT - 53T^{2} \) |
| 59 | \( 1 + (-3.28 - 5.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.47 - 9.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.562 + 0.324i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.83 + 3.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 2.60iT - 73T^{2} \) |
| 79 | \( 1 - 2.29T + 79T^{2} \) |
| 83 | \( 1 + 13.3iT - 83T^{2} \) |
| 89 | \( 1 + (0.578 - 1.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.9 + 6.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.34840206406733205074814998658, −12.67014459845153648591327270311, −11.58321491117248786353475935029, −10.25258644989697718510551459611, −9.028489200832396148683763148742, −7.948597982733608338969925292950, −7.21439356904634772024423946717, −5.03642411618548876173874966014, −4.39917425700914531773270215889, −2.81659243434458661910098368679,
2.38837655985124512019642911157, 3.48549463444657931005356619224, 5.16235074788230816556353484588, 6.68959653974407040274764864586, 8.006030264182891579282044709394, 8.617405781623601843241800653804, 10.51804183926324582074859082667, 11.21928690458408959490371105574, 12.24651945513242530077770155868, 13.34702505321402299987331004263