| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.45 − 0.837i)3-s + (0.499 + 0.866i)4-s + (−1.67 + 1.48i)5-s + (0.837 + 1.45i)6-s + (−1.56 + 0.903i)7-s − 0.999i·8-s + (−0.0969 − 0.167i)9-s + (2.19 − 0.445i)10-s + (−3.22 + 5.58i)11-s − 1.67i·12-s + (1.98 + 3.01i)13-s + 1.80·14-s + (3.67 − 0.745i)15-s + (−0.5 + 0.866i)16-s + (−0.416 + 0.240i)17-s + ⋯ |
| L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.837 − 0.483i)3-s + (0.249 + 0.433i)4-s + (−0.749 + 0.662i)5-s + (0.341 + 0.592i)6-s + (−0.591 + 0.341i)7-s − 0.353i·8-s + (−0.0323 − 0.0559i)9-s + (0.692 − 0.140i)10-s + (−0.971 + 1.68i)11-s − 0.483i·12-s + (0.549 + 0.835i)13-s + 0.482·14-s + (0.947 − 0.192i)15-s + (−0.125 + 0.216i)16-s + (−0.101 + 0.0583i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.491 - 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.491 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0972584 + 0.166575i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0972584 + 0.166575i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (1.67 - 1.48i)T \) |
| 13 | \( 1 + (-1.98 - 3.01i)T \) |
| good | 3 | \( 1 + (1.45 + 0.837i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (1.56 - 0.903i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.22 - 5.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.416 - 0.240i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.14 + 5.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (6.16 + 3.55i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 + 2.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.25T + 31T^{2} \) |
| 37 | \( 1 + (-2.65 - 1.53i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.75 - 6.50i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 - i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.19iT - 47T^{2} \) |
| 53 | \( 1 + 0.906iT - 53T^{2} \) |
| 59 | \( 1 + (-3.28 - 5.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.47 - 9.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.562 - 0.324i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.83 + 3.17i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2.60iT - 73T^{2} \) |
| 79 | \( 1 - 2.29T + 79T^{2} \) |
| 83 | \( 1 - 13.3iT - 83T^{2} \) |
| 89 | \( 1 + (0.578 - 1.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (11.9 - 6.91i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.21649971949571607167043885212, −12.28966583420773465409084775563, −11.66998745509272851418069371828, −10.67328718118855702779522137749, −9.694697668445695917716154903334, −8.297199005909610440721656790085, −7.02890718985314063814149522073, −6.38940122940346003693385880164, −4.40342043906863960155384983894, −2.51101376793168525427512819477,
0.25574969252288303677080229989, 3.64269483012785613488406966416, 5.34889177952392950443688157828, 6.11041424838698290980474455987, 7.946241813359188703932049555735, 8.448509888422641274838908377615, 10.08489574622713325633360135280, 10.77673907067060345720453112582, 11.66039132946720135584574536401, 12.91196082567534504238493206812