Properties

Label 8-130e4-1.1-c1e4-0-6
Degree $8$
Conductor $285610000$
Sign $1$
Analytic cond. $1.16113$
Root an. cond. $1.01884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4-s + 4·9-s + 2·12-s + 14·13-s − 6·17-s − 12·19-s − 12·23-s − 2·25-s + 4·27-s + 12·29-s + 4·36-s + 18·37-s + 28·39-s − 36·41-s − 4·43-s − 5·49-s − 12·51-s + 14·52-s − 12·53-s − 24·57-s + 36·59-s − 2·61-s − 64-s − 6·68-s − 24·69-s − 4·75-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/2·4-s + 4/3·9-s + 0.577·12-s + 3.88·13-s − 1.45·17-s − 2.75·19-s − 2.50·23-s − 2/5·25-s + 0.769·27-s + 2.22·29-s + 2/3·36-s + 2.95·37-s + 4.48·39-s − 5.62·41-s − 0.609·43-s − 5/7·49-s − 1.68·51-s + 1.94·52-s − 1.64·53-s − 3.17·57-s + 4.68·59-s − 0.256·61-s − 1/8·64-s − 0.727·68-s − 2.88·69-s − 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(1.16113\)
Root analytic conductor: \(1.01884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.071068447\)
\(L(\frac12)\) \(\approx\) \(2.071068447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 - 2 T + 4 T^{3} - 5 T^{4} + 4 p T^{5} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.3.ac_a_e_af
7$C_2^3$ \( 1 + 5 T^{2} - 24 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \) 4.7.a_f_a_ay
11$C_2^3$ \( 1 + 13 T^{2} + 48 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_n_a_bw
17$D_4\times C_2$ \( 1 + 6 T + 20 T^{2} - 108 T^{3} - 645 T^{4} - 108 p T^{5} + 20 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.17.g_u_aee_ayv
19$D_4\times C_2$ \( 1 + 12 T + 89 T^{2} + 492 T^{3} + 2232 T^{4} + 492 p T^{5} + 89 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \) 4.19.m_dl_sy_dhw
23$D_4\times C_2$ \( 1 + 12 T + 74 T^{2} + 288 T^{3} + 1059 T^{4} + 288 p T^{5} + 74 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \) 4.23.m_cw_lc_bot
29$D_4\times C_2$ \( 1 - 12 T + 62 T^{2} - 288 T^{3} + 1707 T^{4} - 288 p T^{5} + 62 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.29.am_ck_alc_cnr
31$D_4\times C_2$ \( 1 - 100 T^{2} + 4314 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_adw_a_gjy
37$D_4\times C_2$ \( 1 - 18 T + 173 T^{2} - 1170 T^{3} + 6852 T^{4} - 1170 p T^{5} + 173 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \) 4.37.as_gr_abta_kdo
41$C_2^2$ \( ( 1 + 18 T + 149 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.bk_xy_kdc_czdb
43$C_2^2$ \( ( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.e_acw_q_ifz
47$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_ago_a_rfv
53$D_{4}$ \( ( 1 + 6 T + 103 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.m_ji_cua_bdqx
59$C_2^2$ \( ( 1 - 18 T + 167 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \) 4.59.abk_zi_amay_eecx
61$D_4\times C_2$ \( 1 + 2 T - 92 T^{2} - 52 T^{3} + 5251 T^{4} - 52 p T^{5} - 92 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.61.c_ado_aca_htz
67$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_fe_a_txz
71$C_2^3$ \( 1 + 106 T^{2} + 6195 T^{4} + 106 p^{2} T^{6} + p^{4} T^{8} \) 4.71.a_ec_a_jeh
73$D_4\times C_2$ \( 1 - 124 T^{2} + 11802 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \) 4.73.a_aeu_a_rly
79$D_{4}$ \( ( 1 - 2 T + 132 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.ae_ki_abgm_bteo
83$D_4\times C_2$ \( 1 - 260 T^{2} + 29706 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \) 4.83.a_aka_a_bryo
89$D_4\times C_2$ \( 1 + 18 T + 169 T^{2} + 1098 T^{3} + 5412 T^{4} + 1098 p T^{5} + 169 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \) 4.89.s_gn_bqg_iae
97$D_4\times C_2$ \( 1 - 42 T + 920 T^{2} - 13944 T^{3} + 157851 T^{4} - 13944 p T^{5} + 920 p^{2} T^{6} - 42 p^{3} T^{7} + p^{4} T^{8} \) 4.97.abq_bjk_auqi_iznf
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15754233316880493629831271641, −9.413540063681346633807313250126, −9.177437026845674059168669774180, −8.811301885522161806246933870043, −8.494171274888494869114445454004, −8.378209864678558874944246394307, −8.255465819569279081369416427980, −8.052891047627317324138043260733, −7.921876494092038646709983613602, −7.02761420502294060023201411231, −6.61392585311012895962959764281, −6.60775075236474066458397663898, −6.50324869531993387509419249081, −6.10361021065949761062404583891, −5.99333068932491202487180354626, −5.13314679161140245856225262785, −4.95107123783892681423417044235, −4.11243522165841246154540440590, −4.02166217655859565416862422534, −4.01592167938776934834061317335, −3.53290408299305136501776025453, −2.87863066665948351263053362496, −2.39557014566654468148346202004, −1.73049891669617410671528272357, −1.64170616099128021979535656547, 1.64170616099128021979535656547, 1.73049891669617410671528272357, 2.39557014566654468148346202004, 2.87863066665948351263053362496, 3.53290408299305136501776025453, 4.01592167938776934834061317335, 4.02166217655859565416862422534, 4.11243522165841246154540440590, 4.95107123783892681423417044235, 5.13314679161140245856225262785, 5.99333068932491202487180354626, 6.10361021065949761062404583891, 6.50324869531993387509419249081, 6.60775075236474066458397663898, 6.61392585311012895962959764281, 7.02761420502294060023201411231, 7.921876494092038646709983613602, 8.052891047627317324138043260733, 8.255465819569279081369416427980, 8.378209864678558874944246394307, 8.494171274888494869114445454004, 8.811301885522161806246933870043, 9.177437026845674059168669774180, 9.413540063681346633807313250126, 10.15754233316880493629831271641

Graph of the $Z$-function along the critical line