L(s) = 1 | + i·2-s + (1 + i)3-s − 4-s + (2 + i)5-s + (−1 + i)6-s − 2·7-s − i·8-s − i·9-s + (−1 + 2i)10-s + (−1 − i)11-s + (−1 − i)12-s + (2 + 3i)13-s − 2i·14-s + (1 + 3i)15-s + 16-s + (−1 − i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.577 + 0.577i)3-s − 0.5·4-s + (0.894 + 0.447i)5-s + (−0.408 + 0.408i)6-s − 0.755·7-s − 0.353i·8-s − 0.333i·9-s + (−0.316 + 0.632i)10-s + (−0.301 − 0.301i)11-s + (−0.288 − 0.288i)12-s + (0.554 + 0.832i)13-s − 0.534i·14-s + (0.258 + 0.774i)15-s + 0.250·16-s + (−0.242 − 0.242i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.134 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.134 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.954349 + 0.833303i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.954349 + 0.833303i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (-2 - i)T \) |
| 13 | \( 1 + (-2 - 3i)T \) |
good | 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 17 | \( 1 + (1 + i)T + 17iT^{2} \) |
| 19 | \( 1 + (3 + 3i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1 + i)T - 23iT^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 + (-1 + i)T - 31iT^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 + (7 - 7i)T - 41iT^{2} \) |
| 43 | \( 1 + (-1 + i)T - 43iT^{2} \) |
| 47 | \( 1 + 10T + 47T^{2} \) |
| 53 | \( 1 + (-1 - i)T + 53iT^{2} \) |
| 59 | \( 1 + (9 - 9i)T - 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 + (-5 + 5i)T - 71iT^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 - 10iT - 79T^{2} \) |
| 83 | \( 1 + 18T + 83T^{2} \) |
| 89 | \( 1 + (-11 + 11i)T - 89iT^{2} \) |
| 97 | \( 1 - 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.64337110530095432106357131999, −13.05459281641719259178489730271, −11.35548037414773873533430140691, −9.988714052225930792873778562481, −9.396034766172495879402545659133, −8.436428541187349539410498002341, −6.74498304168338119841727422465, −6.08369063518413757126183913516, −4.36437902718636375213579142766, −2.88718171924783037467530224203,
1.78487513909741876656119990510, 3.17974475417872030817262495352, 5.07529002721091630239953100297, 6.42182849287379615300516084221, 8.002957984633436240618410672943, 8.925371997439647766362272555654, 10.03163407259311614154419274879, 10.82998032523111201228315194521, 12.59885894662536654305191701361, 12.92358644331471854043348906361