Properties

Label 2-13-13.7-c8-0-6
Degree $2$
Conductor $13$
Sign $-0.746 + 0.665i$
Analytic cond. $5.29592$
Root an. cond. $2.30128$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.97 + 1.33i)2-s + (73.7 − 127. i)3-s + (−198. + 114. i)4-s + (−65.5 − 65.5i)5-s + (−196. + 733. i)6-s + (−2.44e3 − 655. i)7-s + (1.76e3 − 1.76e3i)8-s + (−7.59e3 − 1.31e4i)9-s + (413. + 238. i)10-s + (−3.56e3 − 1.33e4i)11-s + 3.38e4i·12-s + (5.08e3 + 2.81e4i)13-s + 1.30e4·14-s + (−1.32e4 + 3.53e3i)15-s + (2.29e4 − 3.97e4i)16-s + (6.08e4 − 3.51e4i)17-s + ⋯
L(s)  = 1  + (−0.310 + 0.0832i)2-s + (0.910 − 1.57i)3-s + (−0.776 + 0.448i)4-s + (−0.104 − 0.104i)5-s + (−0.151 + 0.565i)6-s + (−1.01 − 0.272i)7-s + (0.431 − 0.431i)8-s + (−1.15 − 2.00i)9-s + (0.0413 + 0.0238i)10-s + (−0.243 − 0.908i)11-s + 1.63i·12-s + (0.177 + 0.984i)13-s + 0.339·14-s + (−0.260 + 0.0698i)15-s + (0.350 − 0.606i)16-s + (0.728 − 0.420i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.746 + 0.665i$
Analytic conductor: \(5.29592\)
Root analytic conductor: \(2.30128\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :4),\ -0.746 + 0.665i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.378813 - 0.993896i\)
\(L(\frac12)\) \(\approx\) \(0.378813 - 0.993896i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-5.08e3 - 2.81e4i)T \)
good2 \( 1 + (4.97 - 1.33i)T + (221. - 128i)T^{2} \)
3 \( 1 + (-73.7 + 127. i)T + (-3.28e3 - 5.68e3i)T^{2} \)
5 \( 1 + (65.5 + 65.5i)T + 3.90e5iT^{2} \)
7 \( 1 + (2.44e3 + 655. i)T + (4.99e6 + 2.88e6i)T^{2} \)
11 \( 1 + (3.56e3 + 1.33e4i)T + (-1.85e8 + 1.07e8i)T^{2} \)
17 \( 1 + (-6.08e4 + 3.51e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (-1.01e4 + 3.78e4i)T + (-1.47e10 - 8.49e9i)T^{2} \)
23 \( 1 + (-2.78e5 - 1.60e5i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-3.48e5 + 6.03e5i)T + (-2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + (-7.04e5 - 7.04e5i)T + 8.52e11iT^{2} \)
37 \( 1 + (6.46e5 + 2.41e6i)T + (-3.04e12 + 1.75e12i)T^{2} \)
41 \( 1 + (3.75e6 - 1.00e6i)T + (6.91e12 - 3.99e12i)T^{2} \)
43 \( 1 + (-1.88e6 + 1.09e6i)T + (5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (5.30e6 - 5.30e6i)T - 2.38e13iT^{2} \)
53 \( 1 - 1.37e5T + 6.22e13T^{2} \)
59 \( 1 + (-1.15e7 - 3.10e6i)T + (1.27e14 + 7.34e13i)T^{2} \)
61 \( 1 + (2.44e6 + 4.23e6i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (9.87e6 - 2.64e6i)T + (3.51e14 - 2.03e14i)T^{2} \)
71 \( 1 + (-9.85e5 + 3.67e6i)T + (-5.59e14 - 3.22e14i)T^{2} \)
73 \( 1 + (-3.80e7 + 3.80e7i)T - 8.06e14iT^{2} \)
79 \( 1 - 1.02e7T + 1.51e15T^{2} \)
83 \( 1 + (-2.14e7 - 2.14e7i)T + 2.25e15iT^{2} \)
89 \( 1 + (-2.07e7 - 7.75e7i)T + (-3.40e15 + 1.96e15i)T^{2} \)
97 \( 1 + (1.54e7 - 5.74e7i)T + (-6.78e15 - 3.91e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.82020216390745008868259752572, −16.35969603154124711691994986719, −14.00107440097339607129668484263, −13.37429230251578496928088803487, −12.18837157573579658391908686568, −9.314509316103974123350424527942, −8.142147938738917692265164967190, −6.75999003326718621801605052373, −3.22030877338622513957385093514, −0.67930255293525061680079740853, 3.31640255908189983347404615442, 5.06872600776321120454876226482, 8.424308716561544382696404085476, 9.721226040179060409517593336214, 10.36851968522165098222597201899, 13.14816293686208733403177598712, 14.72836972858875181374803110367, 15.47829513996681455342617553938, 16.95591049559621076303720440918, 18.80452733273952360571548960690

Graph of the $Z$-function along the critical line