Properties

Label 2-13-13.2-c8-0-1
Degree $2$
Conductor $13$
Sign $0.992 + 0.121i$
Analytic cond. $5.29592$
Root an. cond. $2.30128$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−15.5 − 4.16i)2-s + (11.3 + 19.6i)3-s + (2.72 + 1.57i)4-s + (−311. + 311. i)5-s + (−94.7 − 353. i)6-s + (4.36e3 − 1.16e3i)7-s + (2.87e3 + 2.87e3i)8-s + (3.02e3 − 5.23e3i)9-s + (6.13e3 − 3.54e3i)10-s + (−421. + 1.57e3i)11-s + 71.5i·12-s + (1.18e4 + 2.59e4i)13-s − 7.27e4·14-s + (−9.67e3 − 2.59e3i)15-s + (−3.31e4 − 5.74e4i)16-s + (7.52e4 + 4.34e4i)17-s + ⋯
L(s)  = 1  + (−0.971 − 0.260i)2-s + (0.140 + 0.243i)3-s + (0.0106 + 0.00614i)4-s + (−0.498 + 0.498i)5-s + (−0.0731 − 0.272i)6-s + (1.81 − 0.487i)7-s + (0.702 + 0.702i)8-s + (0.460 − 0.797i)9-s + (0.613 − 0.354i)10-s + (−0.0287 + 0.107i)11-s + 0.00345i·12-s + (0.415 + 0.909i)13-s − 1.89·14-s + (−0.191 − 0.0511i)15-s + (−0.506 − 0.876i)16-s + (0.901 + 0.520i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.121i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.992 + 0.121i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $0.992 + 0.121i$
Analytic conductor: \(5.29592\)
Root analytic conductor: \(2.30128\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :4),\ 0.992 + 0.121i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.04649 - 0.0636183i\)
\(L(\frac12)\) \(\approx\) \(1.04649 - 0.0636183i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-1.18e4 - 2.59e4i)T \)
good2 \( 1 + (15.5 + 4.16i)T + (221. + 128i)T^{2} \)
3 \( 1 + (-11.3 - 19.6i)T + (-3.28e3 + 5.68e3i)T^{2} \)
5 \( 1 + (311. - 311. i)T - 3.90e5iT^{2} \)
7 \( 1 + (-4.36e3 + 1.16e3i)T + (4.99e6 - 2.88e6i)T^{2} \)
11 \( 1 + (421. - 1.57e3i)T + (-1.85e8 - 1.07e8i)T^{2} \)
17 \( 1 + (-7.52e4 - 4.34e4i)T + (3.48e9 + 6.04e9i)T^{2} \)
19 \( 1 + (3.34e4 + 1.24e5i)T + (-1.47e10 + 8.49e9i)T^{2} \)
23 \( 1 + (-3.23e4 + 1.86e4i)T + (3.91e10 - 6.78e10i)T^{2} \)
29 \( 1 + (-3.41e5 - 5.90e5i)T + (-2.50e11 + 4.33e11i)T^{2} \)
31 \( 1 + (-8.84e5 + 8.84e5i)T - 8.52e11iT^{2} \)
37 \( 1 + (-4.07e5 + 1.52e6i)T + (-3.04e12 - 1.75e12i)T^{2} \)
41 \( 1 + (3.34e6 + 8.95e5i)T + (6.91e12 + 3.99e12i)T^{2} \)
43 \( 1 + (2.56e5 + 1.47e5i)T + (5.84e12 + 1.01e13i)T^{2} \)
47 \( 1 + (-4.49e6 - 4.49e6i)T + 2.38e13iT^{2} \)
53 \( 1 + 3.91e6T + 6.22e13T^{2} \)
59 \( 1 + (1.32e7 - 3.54e6i)T + (1.27e14 - 7.34e13i)T^{2} \)
61 \( 1 + (9.16e6 - 1.58e7i)T + (-9.58e13 - 1.66e14i)T^{2} \)
67 \( 1 + (7.68e6 + 2.05e6i)T + (3.51e14 + 2.03e14i)T^{2} \)
71 \( 1 + (-4.41e6 - 1.64e7i)T + (-5.59e14 + 3.22e14i)T^{2} \)
73 \( 1 + (1.60e7 + 1.60e7i)T + 8.06e14iT^{2} \)
79 \( 1 + 4.09e6T + 1.51e15T^{2} \)
83 \( 1 + (-1.41e6 + 1.41e6i)T - 2.25e15iT^{2} \)
89 \( 1 + (-2.14e7 + 8.00e7i)T + (-3.40e15 - 1.96e15i)T^{2} \)
97 \( 1 + (6.58e6 + 2.45e7i)T + (-6.78e15 + 3.91e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.05757047919961341694210835954, −17.06451932656818359423853284880, −15.10150267653917132534894606007, −14.07870997040238342822251563329, −11.57516865966254508752155627552, −10.54082159685956665227959415483, −8.869128576425238889872726378972, −7.49628038793065709885923893644, −4.42692411800147895340926471561, −1.29434735113325264811718656737, 1.26379888756999745403560792445, 4.81118622376530704751135954965, 7.948225091333306632398760848738, 8.275971675180415764577441623482, 10.41498642969795495882830176446, 12.12952395399051200782647275103, 13.85398893286762671804544217960, 15.56562987950251745842803676034, 16.89013931372182635484451134630, 18.10240108213011891000786160517

Graph of the $Z$-function along the critical line