L(s) = 1 | + (5.06 − 5.06i)2-s + 152.·3-s + 204. i·4-s + (−186. + 186. i)5-s + (773. − 773. i)6-s + (−798. − 798. i)7-s + (2.33e3 + 2.33e3i)8-s + 1.67e4·9-s + 1.88e3i·10-s + (−1.54e4 − 1.54e4i)11-s + 3.12e4i·12-s + (6.17e3 − 2.78e4i)13-s − 8.09e3·14-s + (−2.84e4 + 2.84e4i)15-s − 2.87e4·16-s − 2.39e3i·17-s + ⋯ |
L(s) = 1 | + (0.316 − 0.316i)2-s + 1.88·3-s + 0.799i·4-s + (−0.297 + 0.297i)5-s + (0.596 − 0.596i)6-s + (−0.332 − 0.332i)7-s + (0.569 + 0.569i)8-s + 2.55·9-s + 0.188i·10-s + (−1.05 − 1.05i)11-s + 1.50i·12-s + (0.216 − 0.976i)13-s − 0.210·14-s + (−0.561 + 0.561i)15-s − 0.439·16-s − 0.0286i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0759i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.997 - 0.0759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(2.84000 + 0.108013i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.84000 + 0.108013i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (-6.17e3 + 2.78e4i)T \) |
good | 2 | \( 1 + (-5.06 + 5.06i)T - 256iT^{2} \) |
| 3 | \( 1 - 152.T + 6.56e3T^{2} \) |
| 5 | \( 1 + (186. - 186. i)T - 3.90e5iT^{2} \) |
| 7 | \( 1 + (798. + 798. i)T + 5.76e6iT^{2} \) |
| 11 | \( 1 + (1.54e4 + 1.54e4i)T + 2.14e8iT^{2} \) |
| 17 | \( 1 + 2.39e3iT - 6.97e9T^{2} \) |
| 19 | \( 1 + (1.14e5 - 1.14e5i)T - 1.69e10iT^{2} \) |
| 23 | \( 1 + 1.82e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 2.26e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + (-2.75e5 + 2.75e5i)T - 8.52e11iT^{2} \) |
| 37 | \( 1 + (2.45e5 + 2.45e5i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 + (-4.92e5 + 4.92e5i)T - 7.98e12iT^{2} \) |
| 43 | \( 1 - 4.02e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + (-1.35e6 - 1.35e6i)T + 2.38e13iT^{2} \) |
| 53 | \( 1 - 1.23e7T + 6.22e13T^{2} \) |
| 59 | \( 1 + (-6.97e6 - 6.97e6i)T + 1.46e14iT^{2} \) |
| 61 | \( 1 + 9.38e6T + 1.91e14T^{2} \) |
| 67 | \( 1 + (1.59e7 - 1.59e7i)T - 4.06e14iT^{2} \) |
| 71 | \( 1 + (-3.34e7 + 3.34e7i)T - 6.45e14iT^{2} \) |
| 73 | \( 1 + (9.68e6 + 9.68e6i)T + 8.06e14iT^{2} \) |
| 79 | \( 1 + 5.01e7T + 1.51e15T^{2} \) |
| 83 | \( 1 + (2.44e7 - 2.44e7i)T - 2.25e15iT^{2} \) |
| 89 | \( 1 + (-5.38e7 - 5.38e7i)T + 3.93e15iT^{2} \) |
| 97 | \( 1 + (3.06e7 - 3.06e7i)T - 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.47704490126334548652505530463, −16.29618784011241071183159437811, −14.98429251685472138369752709513, −13.57628632027882391433011404221, −12.86325423779856031522634356203, −10.52168624644099631746791809464, −8.511436650589731893473034150723, −7.65165055805375637192283610870, −3.73679552969547901523796167446, −2.71932879136412965571663166493,
2.15940522878395711979312276157, 4.41492354785326048150456053023, 7.15249774286876223887396272559, 8.831392300422416750315369175324, 10.06056101791047656632599904148, 12.88240405823813392349450627468, 13.94628960246226775458286657323, 15.18546603684696495917484068338, 15.76833812270271373685931079386, 18.52724308193263487986757600420