Properties

Label 2-13-13.4-c7-0-2
Degree $2$
Conductor $13$
Sign $-0.165 - 0.986i$
Analytic cond. $4.06100$
Root an. cond. $2.01519$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (12.7 + 7.38i)2-s + (−22.6 + 39.3i)3-s + (44.9 + 77.9i)4-s + 248. i·5-s + (−580. + 335. i)6-s + (497. − 286. i)7-s − 561. i·8-s + (63.0 + 109. i)9-s + (−1.83e3 + 3.18e3i)10-s + (3.41e3 + 1.96e3i)11-s − 4.08e3·12-s + (2.86e3 − 7.38e3i)13-s + 8.47e3·14-s + (−9.78e3 − 5.64e3i)15-s + (9.90e3 − 1.71e4i)16-s + (−7.79e3 − 1.34e4i)17-s + ⋯
L(s)  = 1  + (1.13 + 0.652i)2-s + (−0.485 + 0.840i)3-s + (0.351 + 0.608i)4-s + 0.890i·5-s + (−1.09 + 0.633i)6-s + (0.547 − 0.316i)7-s − 0.387i·8-s + (0.0288 + 0.0499i)9-s + (−0.580 + 1.00i)10-s + (0.772 + 0.446i)11-s − 0.682·12-s + (0.361 − 0.932i)13-s + 0.825·14-s + (−0.748 − 0.432i)15-s + (0.604 − 1.04i)16-s + (−0.384 − 0.666i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.165 - 0.986i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.165 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.165 - 0.986i$
Analytic conductor: \(4.06100\)
Root analytic conductor: \(2.01519\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :7/2),\ -0.165 - 0.986i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.46126 + 1.72649i\)
\(L(\frac12)\) \(\approx\) \(1.46126 + 1.72649i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-2.86e3 + 7.38e3i)T \)
good2 \( 1 + (-12.7 - 7.38i)T + (64 + 110. i)T^{2} \)
3 \( 1 + (22.6 - 39.3i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 - 248. iT - 7.81e4T^{2} \)
7 \( 1 + (-497. + 286. i)T + (4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + (-3.41e3 - 1.96e3i)T + (9.74e6 + 1.68e7i)T^{2} \)
17 \( 1 + (7.79e3 + 1.34e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (1.74e3 - 1.00e3i)T + (4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (3.36e4 - 5.83e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (9.45e4 - 1.63e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + 2.81e5iT - 2.75e10T^{2} \)
37 \( 1 + (-2.28e5 - 1.31e5i)T + (4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 + (1.25e5 + 7.25e4i)T + (9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (3.71e5 + 6.43e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + 1.08e6iT - 5.06e11T^{2} \)
53 \( 1 - 1.63e6T + 1.17e12T^{2} \)
59 \( 1 + (-7.78e5 + 4.49e5i)T + (1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (2.54e5 + 4.40e5i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-3.15e5 - 1.82e5i)T + (3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (2.46e6 - 1.42e6i)T + (4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 - 4.44e6iT - 1.10e13T^{2} \)
79 \( 1 + 6.66e6T + 1.92e13T^{2} \)
83 \( 1 - 4.05e6iT - 2.71e13T^{2} \)
89 \( 1 + (1.01e6 + 5.86e5i)T + (2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (1.12e7 - 6.52e6i)T + (4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.40714359751637374051524562879, −16.87067355726641669138898583110, −15.50665204138183044271616115339, −14.71640029555542213054399511323, −13.40448491711943748493967860073, −11.41829792001795723352805300960, −10.04204331688876850121558208629, −7.16871588467921588031240502773, −5.44057815329865436864222643946, −3.92468460602271271842195075759, 1.55375207709808847797265987054, 4.35157516848148442318771922927, 6.14876464012715684794710552273, 8.624800332803156220199150933712, 11.39263760298811721248826961052, 12.24674742229835706204989319760, 13.25281006586099004742735860693, 14.59034044368687881618750854306, 16.65809054934561729381283053327, 17.93729970502423073105375903566

Graph of the $Z$-function along the critical line