Properties

Label 2-13-13.3-c7-0-3
Degree $2$
Conductor $13$
Sign $0.979 + 0.202i$
Analytic cond. $4.06100$
Root an. cond. $2.01519$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.04 + 5.26i)2-s + (−12.8 − 22.1i)3-s + (45.4 − 78.8i)4-s + 442.·5-s + (77.9 − 135. i)6-s + (−380. + 659. i)7-s + 1.33e3·8-s + (765. − 1.32e3i)9-s + (1.34e3 + 2.33e3i)10-s + (−3.05e3 − 5.29e3i)11-s − 2.33e3·12-s + (409. + 7.91e3i)13-s − 4.63e3·14-s + (−5.66e3 − 9.81e3i)15-s + (−1.77e3 − 3.06e3i)16-s + (−1.87e4 + 3.24e4i)17-s + ⋯
L(s)  = 1  + (0.268 + 0.465i)2-s + (−0.274 − 0.474i)3-s + (0.355 − 0.615i)4-s + 1.58·5-s + (0.147 − 0.255i)6-s + (−0.419 + 0.726i)7-s + 0.919·8-s + (0.349 − 0.605i)9-s + (0.425 + 0.736i)10-s + (−0.692 − 1.19i)11-s − 0.389·12-s + (0.0517 + 0.998i)13-s − 0.451·14-s + (−0.433 − 0.751i)15-s + (−0.108 − 0.187i)16-s + (−0.926 + 1.60i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $0.979 + 0.202i$
Analytic conductor: \(4.06100\)
Root analytic conductor: \(2.01519\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :7/2),\ 0.979 + 0.202i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.96033 - 0.200282i\)
\(L(\frac12)\) \(\approx\) \(1.96033 - 0.200282i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-409. - 7.91e3i)T \)
good2 \( 1 + (-3.04 - 5.26i)T + (-64 + 110. i)T^{2} \)
3 \( 1 + (12.8 + 22.1i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 - 442.T + 7.81e4T^{2} \)
7 \( 1 + (380. - 659. i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + (3.05e3 + 5.29e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
17 \( 1 + (1.87e4 - 3.24e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (1.69e3 - 2.93e3i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-1.49e4 - 2.58e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-2.11e4 - 3.65e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + 1.24e5T + 2.75e10T^{2} \)
37 \( 1 + (7.10e4 + 1.23e5i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 + (-3.57e4 - 6.19e4i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (-6.38e3 + 1.10e4i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 4.37e5T + 5.06e11T^{2} \)
53 \( 1 + 1.01e6T + 1.17e12T^{2} \)
59 \( 1 + (8.79e5 - 1.52e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-8.45e5 + 1.46e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (1.70e6 + 2.96e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-3.97e5 + 6.88e5i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 - 3.45e6T + 1.10e13T^{2} \)
79 \( 1 - 6.86e6T + 1.92e13T^{2} \)
83 \( 1 + 8.04e6T + 2.71e13T^{2} \)
89 \( 1 + (-5.24e5 - 9.09e5i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (5.62e5 - 9.75e5i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.23166133265438157068368811155, −16.84794466086693935465268337140, −15.42540684811306980332894848759, −13.96087390705276192608088078053, −12.88921131031839686700884913924, −10.79979368025154035855962922978, −9.233244988348446262768065610540, −6.45823747055873561914628892415, −5.77433139074942400397231545469, −1.80131509916613304789953745804, 2.38148296092086042903786576526, 4.89479120310323867881218831809, 7.18313669401892168546047558644, 9.852290193013095526277069878187, 10.74413450552846068201913756051, 12.88118992199962496294326894876, 13.59705091391838080066922066954, 15.80124525480035823020548429754, 17.02288488617192885063595845848, 17.99950541068664605915974076555

Graph of the $Z$-function along the critical line