Properties

Label 2-13-13.3-c13-0-13
Degree $2$
Conductor $13$
Sign $-0.949 + 0.312i$
Analytic cond. $13.9400$
Root an. cond. $3.73363$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (11.2 + 19.4i)2-s + (−1.14e3 − 1.97e3i)3-s + (3.84e3 − 6.65e3i)4-s + 1.79e4·5-s + (2.56e4 − 4.44e4i)6-s + (2.81e5 − 4.87e5i)7-s + 3.56e5·8-s + (−1.81e6 + 3.13e6i)9-s + (2.02e5 + 3.50e5i)10-s + (−3.49e6 − 6.05e6i)11-s − 1.75e7·12-s + (9.43e6 + 1.46e7i)13-s + 1.26e7·14-s + (−2.05e7 − 3.56e7i)15-s + (−2.74e7 − 4.76e7i)16-s + (1.89e7 − 3.28e7i)17-s + ⋯
L(s)  = 1  + (0.124 + 0.214i)2-s + (−0.904 − 1.56i)3-s + (0.469 − 0.812i)4-s + 0.515·5-s + (0.224 − 0.388i)6-s + (0.904 − 1.56i)7-s + 0.480·8-s + (−1.13 + 1.96i)9-s + (0.0639 + 0.110i)10-s + (−0.594 − 1.03i)11-s − 1.69·12-s + (0.542 + 0.840i)13-s + 0.448·14-s + (−0.465 − 0.807i)15-s + (−0.409 − 0.709i)16-s + (0.190 − 0.330i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 + 0.312i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.949 + 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.949 + 0.312i$
Analytic conductor: \(13.9400\)
Root analytic conductor: \(3.73363\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :13/2),\ -0.949 + 0.312i)\)

Particular Values

\(L(7)\) \(\approx\) \(0.274859 - 1.71630i\)
\(L(\frac12)\) \(\approx\) \(0.274859 - 1.71630i\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-9.43e6 - 1.46e7i)T \)
good2 \( 1 + (-11.2 - 19.4i)T + (-4.09e3 + 7.09e3i)T^{2} \)
3 \( 1 + (1.14e3 + 1.97e3i)T + (-7.97e5 + 1.38e6i)T^{2} \)
5 \( 1 - 1.79e4T + 1.22e9T^{2} \)
7 \( 1 + (-2.81e5 + 4.87e5i)T + (-4.84e10 - 8.39e10i)T^{2} \)
11 \( 1 + (3.49e6 + 6.05e6i)T + (-1.72e13 + 2.98e13i)T^{2} \)
17 \( 1 + (-1.89e7 + 3.28e7i)T + (-4.95e15 - 8.57e15i)T^{2} \)
19 \( 1 + (3.28e7 - 5.68e7i)T + (-2.10e16 - 3.64e16i)T^{2} \)
23 \( 1 + (-4.98e8 - 8.64e8i)T + (-2.52e17 + 4.36e17i)T^{2} \)
29 \( 1 + (-1.74e9 - 3.01e9i)T + (-5.13e18 + 8.88e18i)T^{2} \)
31 \( 1 - 2.61e9T + 2.44e19T^{2} \)
37 \( 1 + (4.31e8 + 7.47e8i)T + (-1.21e20 + 2.10e20i)T^{2} \)
41 \( 1 + (8.87e8 + 1.53e9i)T + (-4.62e20 + 8.01e20i)T^{2} \)
43 \( 1 + (3.49e8 - 6.05e8i)T + (-8.59e20 - 1.48e21i)T^{2} \)
47 \( 1 - 4.91e10T + 5.46e21T^{2} \)
53 \( 1 - 3.91e10T + 2.60e22T^{2} \)
59 \( 1 + (-1.16e11 + 2.01e11i)T + (-5.24e22 - 9.09e22i)T^{2} \)
61 \( 1 + (1.52e10 - 2.64e10i)T + (-8.09e22 - 1.40e23i)T^{2} \)
67 \( 1 + (4.37e11 + 7.57e11i)T + (-2.74e23 + 4.74e23i)T^{2} \)
71 \( 1 + (-4.80e11 + 8.31e11i)T + (-5.82e23 - 1.00e24i)T^{2} \)
73 \( 1 - 8.68e11T + 1.67e24T^{2} \)
79 \( 1 + 7.23e11T + 4.66e24T^{2} \)
83 \( 1 + 2.62e12T + 8.87e24T^{2} \)
89 \( 1 + (-2.45e12 - 4.24e12i)T + (-1.09e25 + 1.90e25i)T^{2} \)
97 \( 1 + (3.25e12 - 5.63e12i)T + (-3.36e25 - 5.82e25i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40844811025787963328772643859, −13.93414707917528867110561901265, −13.59445377231254107257827578216, −11.46067065569138444037731999173, −10.68462169457813912509789350965, −7.68666532413305515872890732407, −6.58482386355159413531027841745, −5.31492906850534322991829037342, −1.63857208500121691959273967988, −0.815259713277858722575695630838, 2.55813068519893099960530708044, 4.57589611046617611042800334523, 5.81611256863839718179955136778, 8.536950199765382629604242768439, 10.21465560741112187742167047278, 11.41944462414192002167340648407, 12.49725430626155361628114439808, 15.11240298039157704299224284036, 15.70540525307166633396230081536, 17.22383644206338917832907513043

Graph of the $Z$-function along the critical line