Properties

Label 4-6e8-1.1-c3e2-0-9
Degree $4$
Conductor $1679616$
Sign $1$
Analytic cond. $5847.12$
Root an. cond. $8.74451$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 30·7-s + 46·11-s + 92·13-s + 22·17-s + 86·19-s + 58·23-s − 25-s + 108·29-s − 136·31-s + 240·35-s − 180·37-s + 672·41-s + 70·43-s − 852·47-s + 190·49-s + 668·53-s + 368·55-s − 548·59-s + 284·61-s + 736·65-s − 1.16e3·67-s + 806·71-s − 1.51e3·73-s + 1.38e3·77-s + 22·79-s − 1.54e3·83-s + ⋯
L(s)  = 1  + 0.715·5-s + 1.61·7-s + 1.26·11-s + 1.96·13-s + 0.313·17-s + 1.03·19-s + 0.525·23-s − 0.00799·25-s + 0.691·29-s − 0.787·31-s + 1.15·35-s − 0.799·37-s + 2.55·41-s + 0.248·43-s − 2.64·47-s + 0.553·49-s + 1.73·53-s + 0.902·55-s − 1.20·59-s + 0.596·61-s + 1.40·65-s − 2.11·67-s + 1.34·71-s − 2.42·73-s + 2.04·77-s + 0.0313·79-s − 2.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1679616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1679616 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1679616\)    =    \(2^{8} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(5847.12\)
Root analytic conductor: \(8.74451\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1679616,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.555372333\)
\(L(\frac12)\) \(\approx\) \(8.555372333\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 - 8 T + 13 p T^{2} - 8 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 30 T + 710 T^{2} - 30 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 46 T + 1382 T^{2} - 46 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 92 T + 6309 T^{2} - 92 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 22 T - 2917 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 86 T + 10542 T^{2} - 86 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 58 T + 24974 T^{2} - 58 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 108 T + 51493 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 136 T + 12750 T^{2} + 136 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 180 T + 109205 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 672 T + 249934 T^{2} - 672 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 70 T + 53910 T^{2} - 70 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 852 T + 388318 T^{2} + 852 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 668 T + 357854 T^{2} - 668 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 548 T + 478598 T^{2} + 548 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 284 T + 416037 T^{2} - 284 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 1162 T + 914766 T^{2} + 1162 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 806 T + 876422 T^{2} - 806 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1510 T + 1282935 T^{2} + 1510 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 22 T + 648318 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1540 T + 1446230 T^{2} + 1540 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1323 T + p^{3} T^{2} )^{2} \)
97$D_{4}$ \( 1 - 472 T + 1378542 T^{2} - 472 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.289233200526175469851439901761, −9.013674255585463779207573553266, −8.812866022693558867173122812110, −8.326845365386062085860053089879, −7.84817666555741214800580635581, −7.57985244683964226704062499901, −7.00095790654178333573182064760, −6.57726551890129183654280884917, −5.98642022016180531070181412972, −5.87699476666296666629555273519, −5.32093438937642539093137426793, −4.86132004068625778622628392931, −4.27287345149889360000851541292, −4.04620040276696125545287083227, −3.18509028931402519998479296769, −3.08442202252729186237901666631, −1.87396727198346019475732758871, −1.71262414105534083622082589402, −1.16278220563897731806188355359, −0.77189245405439956048615638478, 0.77189245405439956048615638478, 1.16278220563897731806188355359, 1.71262414105534083622082589402, 1.87396727198346019475732758871, 3.08442202252729186237901666631, 3.18509028931402519998479296769, 4.04620040276696125545287083227, 4.27287345149889360000851541292, 4.86132004068625778622628392931, 5.32093438937642539093137426793, 5.87699476666296666629555273519, 5.98642022016180531070181412972, 6.57726551890129183654280884917, 7.00095790654178333573182064760, 7.57985244683964226704062499901, 7.84817666555741214800580635581, 8.326845365386062085860053089879, 8.812866022693558867173122812110, 9.013674255585463779207573553266, 9.289233200526175469851439901761

Graph of the $Z$-function along the critical line