Properties

Label 2-6e4-9.2-c2-0-10
Degree $2$
Conductor $1296$
Sign $-0.984 - 0.173i$
Analytic cond. $35.3134$
Root an. cond. $5.94251$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Error: no document with id 196017213 found in table mf_hecke_traces.

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.04 + 2.91i)5-s + (−5.74 + 9.94i)7-s + (12.6 + 7.32i)11-s + (9.48 + 16.4i)13-s + 5.31i·17-s + 8.97·19-s + (14.1 − 8.14i)23-s + (4.48 − 7.76i)25-s + (36.3 + 21i)29-s + (−4.74 − 8.21i)31-s − 66.9i·35-s − 52.9·37-s + (−54.4 + 31.4i)41-s + (1.48 − 2.57i)43-s + (65.7 + 37.9i)47-s + ⋯
L(s)  = 1  + (−1.00 + 0.582i)5-s + (−0.820 + 1.42i)7-s + (1.15 + 0.666i)11-s + (0.729 + 1.26i)13-s + 0.312i·17-s + 0.472·19-s + (0.613 − 0.354i)23-s + (0.179 − 0.310i)25-s + (1.25 + 0.724i)29-s + (−0.152 − 0.264i)31-s − 1.91i·35-s − 1.43·37-s + (−1.32 + 0.767i)41-s + (0.0345 − 0.0598i)43-s + (1.39 + 0.807i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-0.984 - 0.173i$
Analytic conductor: \(35.3134\)
Root analytic conductor: \(5.94251\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (593, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :1),\ -0.984 - 0.173i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.226742380\)
\(L(\frac12)\) \(\approx\) \(1.226742380\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (5.04 - 2.91i)T + (12.5 - 21.6i)T^{2} \)
7 \( 1 + (5.74 - 9.94i)T + (-24.5 - 42.4i)T^{2} \)
11 \( 1 + (-12.6 - 7.32i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + (-9.48 - 16.4i)T + (-84.5 + 146. i)T^{2} \)
17 \( 1 - 5.31iT - 289T^{2} \)
19 \( 1 - 8.97T + 361T^{2} \)
23 \( 1 + (-14.1 + 8.14i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (-36.3 - 21i)T + (420.5 + 728. i)T^{2} \)
31 \( 1 + (4.74 + 8.21i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + 52.9T + 1.36e3T^{2} \)
41 \( 1 + (54.4 - 31.4i)T + (840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (-1.48 + 2.57i)T + (-924.5 - 1.60e3i)T^{2} \)
47 \( 1 + (-65.7 - 37.9i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + 2.91iT - 2.80e3T^{2} \)
59 \( 1 + (-52.9 + 30.5i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (59.9 - 103. i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (20.5 + 35.5i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + 10.2iT - 5.04e3T^{2} \)
73 \( 1 + 20.0T + 5.32e3T^{2} \)
79 \( 1 + (20.0 - 34.6i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (94.0 + 54.2i)T + (3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 - 106. iT - 7.92e3T^{2} \)
97 \( 1 + (-28.4 + 49.2i)T + (-4.70e3 - 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.673825516766000830209661668182, −8.936320287388875828241510982706, −8.501402526113183822523177305174, −7.09957381441789981244154342877, −6.72144921675559747456445890619, −5.87004424972439886724527500961, −4.60569857612560090724702434350, −3.69113727409235724577798575875, −2.89413816076713285371743147026, −1.57909122588984928344423488934, 0.44650130575570968005827899992, 1.05169544729304689585575791122, 3.34607388418964566647023002784, 3.63322920158371041256197663834, 4.61699245940519929248246468697, 5.76781095445020851997192161530, 6.79143511959540274422044157257, 7.38568066087644662855389441346, 8.350627854094044967711309154681, 8.894058826044726384405926454583

Graph of the $Z$-function along the critical line