Properties

Label 2-6e4-9.5-c2-0-18
Degree $2$
Conductor $1296$
Sign $0.342 - 0.939i$
Analytic cond. $35.3134$
Root an. cond. $5.94251$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.89 + 2.82i)5-s + (−3 − 5.19i)7-s + (4.89 − 2.82i)11-s + (−5 + 8.66i)13-s + 22.6i·17-s − 2·19-s + (9.79 + 5.65i)23-s + (3.49 + 6.06i)25-s + (−14.6 + 8.48i)29-s + (−11 + 19.0i)31-s − 33.9i·35-s − 6·37-s + (29.3 + 16.9i)41-s + (41 + 71.0i)43-s + (58.7 − 33.9i)47-s + ⋯
L(s)  = 1  + (0.979 + 0.565i)5-s + (−0.428 − 0.742i)7-s + (0.445 − 0.257i)11-s + (−0.384 + 0.666i)13-s + 1.33i·17-s − 0.105·19-s + (0.425 + 0.245i)23-s + (0.139 + 0.242i)25-s + (−0.506 + 0.292i)29-s + (−0.354 + 0.614i)31-s − 0.969i·35-s − 0.162·37-s + (0.716 + 0.413i)41-s + (0.953 + 1.65i)43-s + (1.25 − 0.722i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $0.342 - 0.939i$
Analytic conductor: \(35.3134\)
Root analytic conductor: \(5.94251\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :1),\ 0.342 - 0.939i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.999359743\)
\(L(\frac12)\) \(\approx\) \(1.999359743\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-4.89 - 2.82i)T + (12.5 + 21.6i)T^{2} \)
7 \( 1 + (3 + 5.19i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (-4.89 + 2.82i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 + (5 - 8.66i)T + (-84.5 - 146. i)T^{2} \)
17 \( 1 - 22.6iT - 289T^{2} \)
19 \( 1 + 2T + 361T^{2} \)
23 \( 1 + (-9.79 - 5.65i)T + (264.5 + 458. i)T^{2} \)
29 \( 1 + (14.6 - 8.48i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (11 - 19.0i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + 6T + 1.36e3T^{2} \)
41 \( 1 + (-29.3 - 16.9i)T + (840.5 + 1.45e3i)T^{2} \)
43 \( 1 + (-41 - 71.0i)T + (-924.5 + 1.60e3i)T^{2} \)
47 \( 1 + (-58.7 + 33.9i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 - 62.2iT - 2.80e3T^{2} \)
59 \( 1 + (63.6 + 36.7i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-43 - 74.4i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-1 + 1.73i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 124. iT - 5.04e3T^{2} \)
73 \( 1 - 82T + 5.32e3T^{2} \)
79 \( 1 + (-5 - 8.66i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (63.6 - 36.7i)T + (3.44e3 - 5.96e3i)T^{2} \)
89 \( 1 - 33.9iT - 7.92e3T^{2} \)
97 \( 1 + (-47 - 81.4i)T + (-4.70e3 + 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.542567893647974398765943740792, −9.103157813322205393203541504558, −7.911863918952835177264371357560, −6.98679041995966390281390962874, −6.36826107828788581892100878317, −5.65885269215763550395980297780, −4.37220155554220722316821827555, −3.52041123336075523080997102100, −2.35561565244325039032738975791, −1.25638967286228495647750880112, 0.59941449332258694982275463674, 2.04765219098676099102445354041, 2.85676242503858728719755381384, 4.21821662330962512991587951372, 5.40099115504315938441958702904, 5.67974503953819005478276272428, 6.81338276958273828566386599775, 7.62599789187262286503301426481, 8.819728911559049669176537336308, 9.328455833661269932168691064975

Graph of the $Z$-function along the critical line