| L(s) = 1 | + (−0.866 − 1.5i)5-s + (9 + 5.19i)7-s + (−15.5 − 9i)11-s + (2.5 + 4.33i)13-s − 12.1·17-s − 10.3i·19-s + (−15.5 + 9i)23-s + (11 − 19.0i)25-s + (11.2 − 19.5i)29-s + (−18 + 10.3i)31-s − 18i·35-s − 19·37-s + (−31.1 − 54i)41-s + (−45 − 25.9i)43-s + (62.3 + 36i)47-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.300i)5-s + (1.28 + 0.742i)7-s + (−1.41 − 0.818i)11-s + (0.192 + 0.333i)13-s − 0.713·17-s − 0.546i·19-s + (−0.677 + 0.391i)23-s + (0.440 − 0.762i)25-s + (0.388 − 0.672i)29-s + (−0.580 + 0.335i)31-s − 0.514i·35-s − 0.513·37-s + (−0.760 − 1.31i)41-s + (−1.04 − 0.604i)43-s + (1.32 + 0.765i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.8715192315\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8715192315\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.866 + 1.5i)T + (-12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (-9 - 5.19i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (15.5 + 9i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-2.5 - 4.33i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 12.1T + 289T^{2} \) |
| 19 | \( 1 + 10.3iT - 361T^{2} \) |
| 23 | \( 1 + (15.5 - 9i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-11.2 + 19.5i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (18 - 10.3i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 19T + 1.36e3T^{2} \) |
| 41 | \( 1 + (31.1 + 54i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (45 + 25.9i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-62.3 - 36i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 62.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-62.3 + 36i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-21.5 + 37.2i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-81 + 46.7i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 90iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 107T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-63 - 36.3i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (31.1 + 18i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 112.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-43 + 74.4i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.813694226054821107367266576591, −8.459282247943047343890448468458, −7.79317314768490771184541564883, −6.70947509402173199369857337056, −5.53762927548376280575023921305, −5.09326927863874247926826226699, −4.09883741200350406446827526110, −2.72585643939664066648573405092, −1.84170101328515043989131824902, −0.24097673231710291588989224961,
1.43430706612739179997268705015, 2.50008279025537360147821718083, 3.77049987162676625176385558565, 4.76894939143157439927372166855, 5.31136412616635254251239599214, 6.63213290033981990078812838549, 7.49853372218103322939669067491, 7.972864239782656503530787278318, 8.759062444257260251153881901491, 10.07047642397394405449660906330