Properties

Label 2-6e4-4.3-c2-0-45
Degree $2$
Conductor $1296$
Sign $-0.5 + 0.866i$
Analytic cond. $35.3134$
Root an. cond. $5.94251$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.03·5-s − 11.8i·7-s − 6.10i·11-s − 14.8·13-s + 26.6·17-s − 9.45i·19-s − 19.9i·23-s + 11.4·25-s − 44.6·29-s + 6.26i·31-s − 71.3i·35-s − 6.65·37-s − 17.6·41-s − 23.4i·43-s + 42.0i·47-s + ⋯
L(s)  = 1  + 1.20·5-s − 1.68i·7-s − 0.554i·11-s − 1.14·13-s + 1.57·17-s − 0.497i·19-s − 0.866i·23-s + 0.456·25-s − 1.53·29-s + 0.202i·31-s − 2.03i·35-s − 0.179·37-s − 0.430·41-s − 0.544i·43-s + 0.894i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-0.5 + 0.866i$
Analytic conductor: \(35.3134\)
Root analytic conductor: \(5.94251\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (1135, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :1),\ -0.5 + 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.915507881\)
\(L(\frac12)\) \(\approx\) \(1.915507881\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6.03T + 25T^{2} \)
7 \( 1 + 11.8iT - 49T^{2} \)
11 \( 1 + 6.10iT - 121T^{2} \)
13 \( 1 + 14.8T + 169T^{2} \)
17 \( 1 - 26.6T + 289T^{2} \)
19 \( 1 + 9.45iT - 361T^{2} \)
23 \( 1 + 19.9iT - 529T^{2} \)
29 \( 1 + 44.6T + 841T^{2} \)
31 \( 1 - 6.26iT - 961T^{2} \)
37 \( 1 + 6.65T + 1.36e3T^{2} \)
41 \( 1 + 17.6T + 1.68e3T^{2} \)
43 \( 1 + 23.4iT - 1.84e3T^{2} \)
47 \( 1 - 42.0iT - 2.20e3T^{2} \)
53 \( 1 + 51.6T + 2.80e3T^{2} \)
59 \( 1 + 37.9iT - 3.48e3T^{2} \)
61 \( 1 - 90.7T + 3.72e3T^{2} \)
67 \( 1 - 61.7iT - 4.48e3T^{2} \)
71 \( 1 - 39.5iT - 5.04e3T^{2} \)
73 \( 1 - 35.0T + 5.32e3T^{2} \)
79 \( 1 - 90.0iT - 6.24e3T^{2} \)
83 \( 1 + 118. iT - 6.88e3T^{2} \)
89 \( 1 + 14.4T + 7.92e3T^{2} \)
97 \( 1 + 135.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.588711788159269348600655548848, −8.315309747527154937277969066041, −7.42109509382134042172135304041, −6.84513959787006106607853634979, −5.79149768831244843040170609979, −5.04807683373740212707211248025, −3.97398418453739249048627704158, −2.93965511554995307021103141314, −1.66120937248628843014309568886, −0.51733113287391034592423169345, 1.71066401585566755670032819574, 2.33702073149281850025354189657, 3.43088431818682554299662324653, 5.09749419420438512399611123784, 5.49433951303712749139040601718, 6.16359438780180400015395771795, 7.33429193188848630407757226941, 8.130595260426988200758023037284, 9.259479062807137572566762629222, 9.620894933952847876619675803126

Graph of the $Z$-function along the critical line