| L(s) = 1 | + (−0.569 − 0.569i)3-s + (1.48 − 1.67i)5-s + (2.93 − 2.93i)7-s − 2.35i·9-s + 3.04i·11-s + (1.80 − 1.80i)13-s + (−1.79 + 0.110i)15-s + (−3.96 − 3.96i)17-s + 7.56·19-s − 3.35·21-s + (−1.25 − 1.25i)23-s + (−0.612 − 4.96i)25-s + (−3.04 + 3.04i)27-s + 3.61i·29-s + 8.15i·31-s + ⋯ |
| L(s) = 1 | + (−0.329 − 0.329i)3-s + (0.662 − 0.749i)5-s + (1.11 − 1.11i)7-s − 0.783i·9-s + 0.919i·11-s + (0.500 − 0.500i)13-s + (−0.464 + 0.0285i)15-s + (−0.961 − 0.961i)17-s + 1.73·19-s − 0.731·21-s + (−0.260 − 0.260i)23-s + (−0.122 − 0.992i)25-s + (−0.586 + 0.586i)27-s + 0.670i·29-s + 1.46i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.889538159\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.889538159\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.48 + 1.67i)T \) |
| good | 3 | \( 1 + (0.569 + 0.569i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.93 + 2.93i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.04iT - 11T^{2} \) |
| 13 | \( 1 + (-1.80 + 1.80i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.96 + 3.96i)T + 17iT^{2} \) |
| 19 | \( 1 - 7.56T + 19T^{2} \) |
| 23 | \( 1 + (1.25 + 1.25i)T + 23iT^{2} \) |
| 29 | \( 1 - 3.61iT - 29T^{2} \) |
| 31 | \( 1 - 8.15iT - 31T^{2} \) |
| 37 | \( 1 + (-3.54 - 3.54i)T + 37iT^{2} \) |
| 41 | \( 1 + 2.57T + 41T^{2} \) |
| 43 | \( 1 + (-0.569 - 0.569i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.62 - 4.62i)T - 47iT^{2} \) |
| 53 | \( 1 + (0.768 - 0.768i)T - 53iT^{2} \) |
| 59 | \( 1 + 1.46T + 59T^{2} \) |
| 61 | \( 1 + 6.96T + 61T^{2} \) |
| 67 | \( 1 + (6.22 - 6.22i)T - 67iT^{2} \) |
| 71 | \( 1 + 6.97iT - 71T^{2} \) |
| 73 | \( 1 + (-9.31 + 9.31i)T - 73iT^{2} \) |
| 79 | \( 1 - 9.03T + 79T^{2} \) |
| 83 | \( 1 + (6.99 + 6.99i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.70iT - 89T^{2} \) |
| 97 | \( 1 + (-1.38 - 1.38i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.452771204948791560140831051853, −8.704479099664999335603682438237, −7.66166275674255819247733145413, −7.06994516066616263804110398024, −6.14291291956886355755620679214, −4.97587440420259769464433883417, −4.65041792779773043518273351190, −3.27286788673638626133535809311, −1.63548937841939678951322133896, −0.901940178534577478159393475097,
1.73992190754344932018226859435, 2.53613651041171108591309489901, 3.85623579935000409351135020655, 5.03780623782846579412787505508, 5.73499244825735760746380529199, 6.26494330789414457984612301189, 7.59981187775999926545433380470, 8.270501607865440004163271884575, 9.130721323872221988850343780329, 9.901258203610409390279141045759