| L(s) = 1 | − 2.41i·3-s + (−2.21 + 0.328i)5-s + (−0.988 + 0.988i)7-s − 2.85·9-s + (−3.82 + 3.82i)11-s − 1.72·13-s + (0.794 + 5.35i)15-s + (5.54 − 5.54i)17-s + (−0.392 + 0.392i)19-s + (2.39 + 2.39i)21-s + (4.28 + 4.28i)23-s + (4.78 − 1.45i)25-s − 0.353i·27-s + (4.24 + 4.24i)29-s + 6.43i·31-s + ⋯ |
| L(s) = 1 | − 1.39i·3-s + (−0.989 + 0.146i)5-s + (−0.373 + 0.373i)7-s − 0.951·9-s + (−1.15 + 1.15i)11-s − 0.478·13-s + (0.205 + 1.38i)15-s + (1.34 − 1.34i)17-s + (−0.0900 + 0.0900i)19-s + (0.521 + 0.521i)21-s + (0.893 + 0.893i)23-s + (0.956 − 0.290i)25-s − 0.0681i·27-s + (0.787 + 0.787i)29-s + 1.15i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 - 0.245i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.969 - 0.245i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.9370125877\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9370125877\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.21 - 0.328i)T \) |
| good | 3 | \( 1 + 2.41iT - 3T^{2} \) |
| 7 | \( 1 + (0.988 - 0.988i)T - 7iT^{2} \) |
| 11 | \( 1 + (3.82 - 3.82i)T - 11iT^{2} \) |
| 13 | \( 1 + 1.72T + 13T^{2} \) |
| 17 | \( 1 + (-5.54 + 5.54i)T - 17iT^{2} \) |
| 19 | \( 1 + (0.392 - 0.392i)T - 19iT^{2} \) |
| 23 | \( 1 + (-4.28 - 4.28i)T + 23iT^{2} \) |
| 29 | \( 1 + (-4.24 - 4.24i)T + 29iT^{2} \) |
| 31 | \( 1 - 6.43iT - 31T^{2} \) |
| 37 | \( 1 + 0.399T + 37T^{2} \) |
| 41 | \( 1 + 2.41iT - 41T^{2} \) |
| 43 | \( 1 - 1.73T + 43T^{2} \) |
| 47 | \( 1 + (2.36 + 2.36i)T + 47iT^{2} \) |
| 53 | \( 1 - 6.63iT - 53T^{2} \) |
| 59 | \( 1 + (-6.32 - 6.32i)T + 59iT^{2} \) |
| 61 | \( 1 + (-7.89 + 7.89i)T - 61iT^{2} \) |
| 67 | \( 1 - 0.547T + 67T^{2} \) |
| 71 | \( 1 + 2.49T + 71T^{2} \) |
| 73 | \( 1 + (5.30 - 5.30i)T - 73iT^{2} \) |
| 79 | \( 1 + 14.1T + 79T^{2} \) |
| 83 | \( 1 - 9.94iT - 83T^{2} \) |
| 89 | \( 1 - 8.69T + 89T^{2} \) |
| 97 | \( 1 + (3.81 - 3.81i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.708441094389511270697435561848, −8.655603695992780196631201708940, −7.72583869292908116943937820955, −7.29086131689879169840821938733, −6.85811414229697156947076778010, −5.47522491696850337641055892629, −4.78527619848123516733313511548, −3.20131179747702716077037299786, −2.51237226934070672222608386930, −1.04720585074573216453482954171,
0.48308018516500025283789561731, 2.90463892218425625265315765562, 3.59406288595544638602166550037, 4.39049747633401826212726291441, 5.21814812112265209668734876422, 6.10775402236734600588564862058, 7.39079503539570429798221260894, 8.228449341520348560305700459002, 8.708457306007850370773591693345, 9.992299272373617624475208240464