Properties

Label 12-1280e6-1.1-c1e6-0-0
Degree $12$
Conductor $4.398\times 10^{18}$
Sign $1$
Analytic cond. $1.14004\times 10^{6}$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 2·9-s − 16·13-s + 25-s − 12·27-s − 16·31-s − 16·37-s − 64·39-s − 4·41-s − 28·43-s + 18·49-s + 32·53-s − 20·67-s − 24·71-s + 4·75-s + 32·79-s − 19·81-s + 60·83-s − 20·89-s − 64·93-s − 20·107-s − 64·111-s − 32·117-s + 22·121-s − 16·123-s + 16·125-s + 127-s + ⋯
L(s)  = 1  + 2.30·3-s + 2/3·9-s − 4.43·13-s + 1/5·25-s − 2.30·27-s − 2.87·31-s − 2.63·37-s − 10.2·39-s − 0.624·41-s − 4.26·43-s + 18/7·49-s + 4.39·53-s − 2.44·67-s − 2.84·71-s + 0.461·75-s + 3.60·79-s − 2.11·81-s + 6.58·83-s − 2.11·89-s − 6.63·93-s − 1.93·107-s − 6.07·111-s − 2.95·117-s + 2·121-s − 1.44·123-s + 1.43·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{48} \cdot 5^{6}\)
Sign: $1$
Analytic conductor: \(1.14004\times 10^{6}\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{48} \cdot 5^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7618819335\)
\(L(\frac12)\) \(\approx\) \(0.7618819335\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T^{2} - 16 T^{3} - p T^{4} + p^{3} T^{6} \)
good3 \( ( 1 - 2 T + 5 T^{2} - 8 T^{3} + 5 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
7 \( 1 - 18 T^{2} + 239 T^{4} - 1868 T^{6} + 239 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 2 p T^{2} + 311 T^{4} - 4116 T^{6} + 311 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
13 \( ( 1 + 8 T + 47 T^{2} + 192 T^{3} + 47 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
17 \( 1 - 54 T^{2} + 1583 T^{4} - 31412 T^{6} + 1583 p^{2} T^{8} - 54 p^{4} T^{10} + p^{6} T^{12} \)
19 \( 1 - 2 p T^{2} + 1351 T^{4} - 26804 T^{6} + 1351 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
23 \( 1 - 98 T^{2} + 4335 T^{4} - 120044 T^{6} + 4335 p^{2} T^{8} - 98 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{3} \)
31 \( ( 1 + 8 T + 61 T^{2} + 368 T^{3} + 61 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( ( 1 + 8 T + 79 T^{2} + 320 T^{3} + 79 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
41 \( ( 1 + 2 T + 71 T^{2} - 20 T^{3} + 71 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( ( 1 + 14 T + 149 T^{2} + 1104 T^{3} + 149 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 210 T^{2} + 21311 T^{4} - 1269644 T^{6} + 21311 p^{2} T^{8} - 210 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 16 T + 231 T^{2} - 1776 T^{3} + 231 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 278 T^{2} + 35991 T^{4} - 2711444 T^{6} + 35991 p^{2} T^{8} - 278 p^{4} T^{10} + p^{6} T^{12} \)
61 \( 1 - 210 T^{2} + 18695 T^{4} - 1171868 T^{6} + 18695 p^{2} T^{8} - 210 p^{4} T^{10} + p^{6} T^{12} \)
67 \( ( 1 + 10 T + 141 T^{2} + 736 T^{3} + 141 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
71 \( ( 1 + 12 T + 197 T^{2} + 1384 T^{3} + 197 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 38 T^{2} + 10495 T^{4} - 503444 T^{6} + 10495 p^{2} T^{8} - 38 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 16 T + 269 T^{2} - 2400 T^{3} + 269 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( ( 1 - 30 T + 509 T^{2} - 5504 T^{3} + 509 p T^{4} - 30 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
89 \( ( 1 + 10 T + 151 T^{2} + 684 T^{3} + 151 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 - 278 T^{2} + 46735 T^{4} - 5290868 T^{6} + 46735 p^{2} T^{8} - 278 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.06620802440505815920321241113, −4.93789088633096568732711380786, −4.74332271611027227039615818339, −4.73055137303972126295226225128, −4.57668564658521570333875182252, −4.19589291258586748997681064795, −3.97358549050841972780529778909, −3.86218921974129525415162486658, −3.72573475660776696736090782175, −3.51503324169879166391030694637, −3.29834097433060606514036264393, −3.18105372357371054406860186489, −3.12795050311415123732220028360, −3.06768673043374900177942004343, −2.46420850472633657284426807785, −2.44835801983859669160235899421, −2.43916895105153310372668383980, −2.29177299524063194949029651244, −2.04607977285097026106622138702, −1.96114210419891364673790608769, −1.71520714497584986542801945078, −1.32967067982207145138627129610, −0.960970335086214551497487309086, −0.30876343097875368341812398357, −0.18320740375440590333560405971, 0.18320740375440590333560405971, 0.30876343097875368341812398357, 0.960970335086214551497487309086, 1.32967067982207145138627129610, 1.71520714497584986542801945078, 1.96114210419891364673790608769, 2.04607977285097026106622138702, 2.29177299524063194949029651244, 2.43916895105153310372668383980, 2.44835801983859669160235899421, 2.46420850472633657284426807785, 3.06768673043374900177942004343, 3.12795050311415123732220028360, 3.18105372357371054406860186489, 3.29834097433060606514036264393, 3.51503324169879166391030694637, 3.72573475660776696736090782175, 3.86218921974129525415162486658, 3.97358549050841972780529778909, 4.19589291258586748997681064795, 4.57668564658521570333875182252, 4.73055137303972126295226225128, 4.74332271611027227039615818339, 4.93789088633096568732711380786, 5.06620802440505815920321241113

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.