Properties

Label 2-1280-5.4-c1-0-26
Degree $2$
Conductor $1280$
Sign $0.774 + 0.632i$
Analytic cond. $10.2208$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·3-s + (1.73 + 1.41i)5-s − 2.44i·7-s + 0.999·9-s + 3.46·11-s + (2.00 − 2.44i)15-s + 4.89i·17-s + 3.46·19-s − 3.46·21-s + 2.44i·23-s + (0.999 + 4.89i)25-s − 5.65i·27-s − 4·31-s − 4.89i·33-s + (3.46 − 4.24i)35-s + ⋯
L(s)  = 1  − 0.816i·3-s + (0.774 + 0.632i)5-s − 0.925i·7-s + 0.333·9-s + 1.04·11-s + (0.516 − 0.632i)15-s + 1.18i·17-s + 0.794·19-s − 0.755·21-s + 0.510i·23-s + (0.199 + 0.979i)25-s − 1.08i·27-s − 0.718·31-s − 0.852i·33-s + (0.585 − 0.717i)35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1280\)    =    \(2^{8} \cdot 5\)
Sign: $0.774 + 0.632i$
Analytic conductor: \(10.2208\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1280} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1280,\ (\ :1/2),\ 0.774 + 0.632i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.177405543\)
\(L(\frac12)\) \(\approx\) \(2.177405543\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-1.73 - 1.41i)T \)
good3 \( 1 + 1.41iT - 3T^{2} \)
7 \( 1 + 2.44iT - 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 4.89iT - 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 - 2.44iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 8.48iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 4.24iT - 43T^{2} \)
47 \( 1 - 7.34iT - 47T^{2} \)
53 \( 1 - 5.65iT - 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 3.46T + 61T^{2} \)
67 \( 1 + 4.24iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 + 4.89iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 9.89iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 4.89iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.642011668823009907374866635380, −8.846542182029182471528032692662, −7.52680694396134923847010432784, −7.24148655510805656267274271378, −6.35981304926624898590321313384, −5.70909742931164824202641692653, −4.25217975103964375793307081218, −3.43975238087377670073614455875, −1.97866523500807962753182022751, −1.18374643757067192353577345042, 1.27876517353509605224250824440, 2.55549500052085258332401945692, 3.75664049249258193904455512269, 4.83066084607386694877160437208, 5.32395816591028880136917080310, 6.32603436921949781356015901397, 7.20831380421221254487300371176, 8.537667652895850764153835331988, 9.094005497951421004726410253082, 9.688072151900944528659994573432

Graph of the $Z$-function along the critical line