Properties

Label 2-2e7-4.3-c8-0-5
Degree $2$
Conductor $128$
Sign $-i$
Analytic cond. $52.1444$
Root an. cond. $7.22111$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 115. i·3-s − 1.17e3·5-s − 4.24e3i·7-s − 6.72e3·9-s − 4.23e3i·11-s + 2.19e4·13-s − 1.35e5i·15-s − 1.14e5·17-s + 4.42e4i·19-s + 4.89e5·21-s + 1.14e5i·23-s + 9.93e5·25-s − 1.88e4i·27-s + 2.62e5·29-s − 1.08e6i·31-s + ⋯
L(s)  = 1  + 1.42i·3-s − 1.88·5-s − 1.76i·7-s − 1.02·9-s − 0.289i·11-s + 0.767·13-s − 2.67i·15-s − 1.36·17-s + 0.339i·19-s + 2.51·21-s + 0.408i·23-s + 2.54·25-s − 0.0354i·27-s + 0.371·29-s − 1.17i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $-i$
Analytic conductor: \(52.1444\)
Root analytic conductor: \(7.22111\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{128} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.8363610878\)
\(L(\frac12)\) \(\approx\) \(0.8363610878\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 115. iT - 6.56e3T^{2} \)
5 \( 1 + 1.17e3T + 3.90e5T^{2} \)
7 \( 1 + 4.24e3iT - 5.76e6T^{2} \)
11 \( 1 + 4.23e3iT - 2.14e8T^{2} \)
13 \( 1 - 2.19e4T + 8.15e8T^{2} \)
17 \( 1 + 1.14e5T + 6.97e9T^{2} \)
19 \( 1 - 4.42e4iT - 1.69e10T^{2} \)
23 \( 1 - 1.14e5iT - 7.83e10T^{2} \)
29 \( 1 - 2.62e5T + 5.00e11T^{2} \)
31 \( 1 + 1.08e6iT - 8.52e11T^{2} \)
37 \( 1 + 2.55e6T + 3.51e12T^{2} \)
41 \( 1 + 4.94e5T + 7.98e12T^{2} \)
43 \( 1 + 1.26e6iT - 1.16e13T^{2} \)
47 \( 1 - 1.22e6iT - 2.38e13T^{2} \)
53 \( 1 + 4.49e6T + 6.22e13T^{2} \)
59 \( 1 - 3.25e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.91e7T + 1.91e14T^{2} \)
67 \( 1 - 2.12e6iT - 4.06e14T^{2} \)
71 \( 1 - 1.09e7iT - 6.45e14T^{2} \)
73 \( 1 + 4.41e5T + 8.06e14T^{2} \)
79 \( 1 - 2.21e7iT - 1.51e15T^{2} \)
83 \( 1 - 6.37e7iT - 2.25e15T^{2} \)
89 \( 1 - 9.29e7T + 3.93e15T^{2} \)
97 \( 1 - 9.60e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53167019120129929159144606486, −10.96799230384640835651755037530, −10.27631738804935539044926133695, −8.857145208613247891557412064624, −7.86753755047855399210435755871, −6.82326417416801212865949637376, −4.75314528628727682884480686113, −3.93036946898340502989589033590, −3.57610255491418917844461038438, −0.68825443992436687208084578509, 0.36461743766912639929932341169, 1.91908176706597049453048053949, 3.15954718675775442956346314448, 4.77555502676182475518497315193, 6.36709474451051317638920881556, 7.19361613578067076303133476984, 8.443277818885448969780677267593, 8.699934187677268273582243049638, 11.03057654536306077404217688159, 11.86711630991973484155829088416

Graph of the $Z$-function along the critical line