Properties

Label 2-1275-85.84-c1-0-6
Degree $2$
Conductor $1275$
Sign $0.158 - 0.987i$
Analytic cond. $10.1809$
Root an. cond. $3.19075$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.632i·2-s − 3-s + 1.59·4-s + 0.632i·6-s − 1.76·7-s − 2.27i·8-s + 9-s + 1.39i·11-s − 1.59·12-s + 5.88i·13-s + 1.11i·14-s + 1.75·16-s + (−2.40 + 3.34i)17-s − 0.632i·18-s − 3.54·19-s + ⋯
L(s)  = 1  − 0.447i·2-s − 0.577·3-s + 0.799·4-s + 0.258i·6-s − 0.666·7-s − 0.805i·8-s + 0.333·9-s + 0.420i·11-s − 0.461·12-s + 1.63i·13-s + 0.297i·14-s + 0.439·16-s + (−0.583 + 0.812i)17-s − 0.149i·18-s − 0.814·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.158 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.158 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1275\)    =    \(3 \cdot 5^{2} \cdot 17\)
Sign: $0.158 - 0.987i$
Analytic conductor: \(10.1809\)
Root analytic conductor: \(3.19075\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1275} (424, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1275,\ (\ :1/2),\ 0.158 - 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9358178118\)
\(L(\frac12)\) \(\approx\) \(0.9358178118\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + (2.40 - 3.34i)T \)
good2 \( 1 + 0.632iT - 2T^{2} \)
7 \( 1 + 1.76T + 7T^{2} \)
11 \( 1 - 1.39iT - 11T^{2} \)
13 \( 1 - 5.88iT - 13T^{2} \)
19 \( 1 + 3.54T + 19T^{2} \)
23 \( 1 + 8.78T + 23T^{2} \)
29 \( 1 - 3.51iT - 29T^{2} \)
31 \( 1 + 0.844iT - 31T^{2} \)
37 \( 1 - 11.9T + 37T^{2} \)
41 \( 1 - 7.55iT - 41T^{2} \)
43 \( 1 - 5.55iT - 43T^{2} \)
47 \( 1 + 7.83iT - 47T^{2} \)
53 \( 1 - 2.93iT - 53T^{2} \)
59 \( 1 - 1.95T + 59T^{2} \)
61 \( 1 - 7.10iT - 61T^{2} \)
67 \( 1 - 1.45iT - 67T^{2} \)
71 \( 1 + 9.90iT - 71T^{2} \)
73 \( 1 + 12.6T + 73T^{2} \)
79 \( 1 - 11.6iT - 79T^{2} \)
83 \( 1 - 3.25iT - 83T^{2} \)
89 \( 1 + 0.725T + 89T^{2} \)
97 \( 1 - 7.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.966775685460247418541190392106, −9.366205672223540531700662763727, −8.195590606347529101483605842059, −7.17791771196608262968819931522, −6.32675115179195547343466653830, −6.15025844646258363665347952286, −4.47454717996846374423031046400, −3.87334001565990337587636384814, −2.44674274967718857138018370571, −1.59573118079810131457125003843, 0.38781368216802929212024937338, 2.22453892495906374537158336270, 3.20271287029610671519875821128, 4.46268675267086554450017496376, 5.80891072970258042667896819538, 5.94803217782505373354909731012, 6.92894572393919323470559672421, 7.77227133016116232177181149333, 8.414501725905742971784280130848, 9.676422124812002341040288977408

Graph of the $Z$-function along the critical line