L(s) = 1 | + 2.67i·2-s − 3-s − 5.14·4-s − 2.67i·6-s + 3.95·7-s − 8.39i·8-s + 9-s + 2.28i·11-s + 5.14·12-s + 1.90i·13-s + 10.5i·14-s + 12.1·16-s + (−2.31 − 3.40i)17-s + 2.67i·18-s − 6.58·19-s + ⋯ |
L(s) = 1 | + 1.88i·2-s − 0.577·3-s − 2.57·4-s − 1.09i·6-s + 1.49·7-s − 2.96i·8-s + 0.333·9-s + 0.689i·11-s + 1.48·12-s + 0.527i·13-s + 2.82i·14-s + 3.03·16-s + (−0.562 − 0.826i)17-s + 0.629i·18-s − 1.51·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.133 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.133 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4683222236\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4683222236\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (2.31 + 3.40i)T \) |
good | 2 | \( 1 - 2.67iT - 2T^{2} \) |
| 7 | \( 1 - 3.95T + 7T^{2} \) |
| 11 | \( 1 - 2.28iT - 11T^{2} \) |
| 13 | \( 1 - 1.90iT - 13T^{2} \) |
| 19 | \( 1 + 6.58T + 19T^{2} \) |
| 23 | \( 1 + 7.11T + 23T^{2} \) |
| 29 | \( 1 - 2.23iT - 29T^{2} \) |
| 31 | \( 1 - 9.45iT - 31T^{2} \) |
| 37 | \( 1 + 6.57T + 37T^{2} \) |
| 41 | \( 1 + 1.52iT - 41T^{2} \) |
| 43 | \( 1 - 4.26iT - 43T^{2} \) |
| 47 | \( 1 + 3.61iT - 47T^{2} \) |
| 53 | \( 1 + 1.48iT - 53T^{2} \) |
| 59 | \( 1 + 10.7T + 59T^{2} \) |
| 61 | \( 1 - 15.0iT - 61T^{2} \) |
| 67 | \( 1 + 4.91iT - 67T^{2} \) |
| 71 | \( 1 + 9.15iT - 71T^{2} \) |
| 73 | \( 1 - 7.94T + 73T^{2} \) |
| 79 | \( 1 - 3.92iT - 79T^{2} \) |
| 83 | \( 1 + 3.85iT - 83T^{2} \) |
| 89 | \( 1 - 4.71T + 89T^{2} \) |
| 97 | \( 1 + 7.70T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13140350559918712187170101495, −9.035395344559115611194275221172, −8.484121505082716792325928579351, −7.68742928552838957021151212193, −6.95708568469706470117698405735, −6.33108897614731870431311652647, −5.28046553356398521325424420684, −4.71155515140613551495444243984, −4.13212963378144808924825769043, −1.75786402135501101210817231407,
0.21512678254384284887278644242, 1.63126822085772833700185833170, 2.33156504911571404396102036005, 3.87323194306702683297771751800, 4.36488385972982692674683305885, 5.32825470273483015450305217220, 6.19475045820600026177680256555, 8.084586203463641118387980766842, 8.243921573256570063496851118784, 9.308315481455694046764697799627